A COUNTEREXAMPLE TO BOX-HALF-INTEGRALITY OF THE INTERSECTION OF CROSSING SUBMODULAR FLOW SYSTEMS

MICHEL X. GOEMANS YUCHONG PAN

We say that a family \mathcal{C} of subsets of a ground set V is crossing if for all $U, W \in \mathcal{C}$ with $U \cap W \neq \emptyset$ and $U \cup W \neq V$, we have $U \cap W, U \cup W \in \mathcal{C}$, and that \mathcal{C} is cross-free if for all $U, W \in \mathcal{C}$, we have $U \subseteq W$ or $W \subseteq U$ or $U \cap W=\emptyset$ or $U \cup W=V$. We say that a set function $f: \mathcal{C} \rightarrow \mathbb{R}$ is crossing submodular if for all $U, W \in \mathcal{C}$ with $U \cap W \neq \emptyset$ and $U \cup W \neq V$,

$$
f(U \cap W)+f(U \cup W) \leq f(U)+f(W)
$$

In [1], Abdi, Cornuéjols and Zambelli proved the following theorem:
Theorem 1 (Abdi, Cornuéjols and Zambelli, 2023, [1). Let $D=(V, A)$ be a weakly connected digraph. Let \mathcal{C}_{i} be a crossing family over V and $f_{i}: \mathcal{C}_{i} \rightarrow \mathbb{Z}$ a crossing submodular function for $i=1,2$. Then

$$
\begin{array}{ll}
y\left(\delta^{+}(U)\right)-y\left(\delta^{-}(U)\right) \leq f_{1}(U), & \forall U \in \mathcal{C}_{1} \\
y\left(\delta^{+}(U)\right)-y\left(\delta^{-}(U)\right) \leq f_{2}(U), & \forall U \in \mathcal{C}_{2}
\end{array}
$$

is totally dual integral.
In addition, they gave an instance for which this system is not boxintegral. In a talk given in the "Combinatorics and Optimization" workshop at ICERM in 2023, Abdi proposed the following conjecture ${ }^{11}$

Conjecture 2. Let $D=(V, A)$ be a weakly connected digraph. Let \mathcal{C}_{i} be a crossing family over V and $f_{i}: \mathcal{C}_{i} \rightarrow \mathbb{Z}$ a crossing submodular function for $i=1,2$. Then

$$
\begin{array}{ll}
y\left(\delta^{+}(U)\right)-y\left(\delta^{-}(U)\right) \leq f_{1}(U), & \forall U \in \mathcal{C}_{1} \\
y\left(\delta^{+}(U)\right)-y\left(\delta^{-}(U)\right) \leq f_{2}(U), & \forall U \in \mathcal{C}_{2}
\end{array}
$$

is box-half-integral.
In this short note, we disprove this conjecture, making Theorem 1 more interesting.

Theorem 3. There exist a weakly connected digraph $D=(V, A)$, crossing submodular functions $f_{i}: \mathcal{C}_{i} \rightarrow \mathbb{Z}$ for $i=1,2$ and $\ell, u \in \mathbb{Z}^{A}$ such that

$$
\begin{equation*}
y\left(\delta^{+}(U)\right)-y\left(\delta^{-}(U)\right) \leq f_{1}(U), \quad \forall U \in \mathcal{C}_{1} \tag{1a}
\end{equation*}
$$

[^0]\[

$$
\begin{array}{cl}
y\left(\delta^{+}(U)\right)-y\left(\delta^{-}(U)\right) \leq f_{2}(U), & \forall U \in \mathcal{C}_{2} \\
\ell_{e} \leq y_{e} \leq u_{e}, & \forall e \in A \tag{1c}
\end{array}
$$
\]

is not half-integral.
Proof. Let $D=(V, A)$ be the weakly connected digraph in Figure 1a. Let \mathcal{C}_{1} and \mathcal{C}_{2} be families of subsets of V depicted in Figures 1b and 1c, with corresponding set functions $f_{i}: \mathcal{C}_{i} \rightarrow \mathbb{Z}$ for $i=1,2$. Since each of \mathcal{C}_{1} and \mathcal{C}_{2} is a family of disjoint sets, \mathcal{C}_{1} and \mathcal{C}_{2} are trivially crossing families, and f_{1} and f_{2} are trivially crossing submodular. Let $\ell=-2 \cdot \mathbf{1} \in \mathbb{Z}^{A}$ and $u=\mathbf{1} \in \mathbb{Z}^{A}$. Let $y^{*} \in \mathbb{Z}^{A}$ be the vector defined in Figure 1d. It is easy to check that y^{*} is a feasible solution to the system (1).

(A) The digraph $D=(V, A)$ in the proof of Theorem 3 .

(c) The crossing family \mathcal{C}_{2} and the crossing submodular set function $f_{2}: \mathcal{C}_{2} \rightarrow \mathbb{Z}$ in the proof of Theorem 3 .

(в) The crossing family \mathcal{C}_{1} and the crossing submodular set function $f_{1}: \mathcal{C}_{1} \rightarrow \mathbb{Z}$ in the proof of Theorem 3 .

(D) A solution $y^{*} \in \mathbb{Z}^{A}$ to the system of linear inequalities in the proof of Theorem 3.

To see that y^{*} is an extreme point of the polyhedron determined by the system (11), it suffices to exhibit 6 linearly independent inequalities that
are tight at y^{*}. Since $y_{e}=u_{e}=1$ for $e \in\left\{\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{5}, v_{6}\right)\right\}$, we obtain 3 inequalities that are tight at y^{*}. In addition, it is easy to check $y\left(\delta^{+}(U)\right)-y\left(\delta^{-}(U)\right)=f_{1}(U)=1$ for all $U \in \mathcal{C}_{1}$ and $y\left(\delta^{+}(U)\right)-y\left(\delta^{-}(U)\right)=$ $f_{2}(U)=0$ for all $U \in \mathcal{C}_{2}$, yielding 3 more inequalities that are tight at y^{*}. Moreover, it can be checked that these 6 inequalities are linearly independent (e.g., by computing the determinant of the matrix whose columns are these vectors). This gives 6 linearly independent inequalities that are tight at y^{*}, completing the proof.

Remark. The intuition of the proof is the following. Let M_{1} and M_{2} be matrices with the same number of rows such that each row consists of at most one 1-entry and at most one - 1 -entry, with all other entries equal to 0 . Then M_{1} and M_{2} are submatrices of incidence matrices of digraphs and are hence totally unimodular. Let

$$
M=\left[M_{1} \mid M_{2}\right] .
$$

Note that M is not necessarily totally unimodular, and there exist instances such that $|\operatorname{det}(M)|$ can be made arbitrarily large. Take such a square matrix M with $|\operatorname{det}(M)| \geq 3$. Let b be an integral vector such that $\left(M^{\mathrm{T}}\right)^{-1} b$ is not half-integral. In the counterexample given in the proof,

$$
M=\left[\begin{array}{rr|r}
1 & 0 & -1 \\
0 & -1 & -1 \\
1 & -1 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

where $\operatorname{det}(M)=-3$.
Let k_{1} and k_{2} be the numbers of columns of M from M_{1} and from M_{2}, respectively. Let m be the number of rows of M. Let $D_{0}=\left(V, A_{0}\right)$ be a digraph, where $V=\left\{0, \ldots, k_{1}\right\} \times\left\{0, \ldots, k_{2}\right\}$ and A_{0} has m arcs, one corresponding to each row of M. For each row of M, let α, α^{\prime} be the indices of the 1-entries from M_{1} and from M_{2} (or 0 if not present), respectively, and β, β^{\prime} the indices of -1 -entries from M_{1} and from M_{2} (or 0 if not present), respectively. Then this row corresponds to the arc $\left(\left(\alpha, \alpha^{\prime}\right),\left(\beta, \beta^{\prime}\right)\right)$.

Let $S_{i}=\{i\} \times\left\{0, \ldots, k_{2}\right\}$ for each $i \in\left[k_{1}\right]$. Let $T_{i}=\left\{0, \ldots, k_{1}\right\} \times\{i\}$ for each $i \in\left[k_{2}\right]$. Let $\mathcal{C}_{1}=\left\{S_{1}, \ldots, S_{k_{1}}\right\}$ and $\mathcal{C}_{2}=\left\{T_{1}, \ldots, T_{k_{2}}\right\}$. Let $g_{1}: \mathcal{C}_{1} \rightarrow \mathbb{Z}$ be defined by $g_{1}\left(S_{i}\right)=b_{i}$ for all $i \in\left[k_{1}\right]$, and let $g_{2}: \mathcal{C}_{2} \rightarrow \mathbb{Z}$ be defined by $g_{2}\left(T_{i}\right)=b_{i+k_{1}}$ for all $i \in\left[k_{2}\right]$. For $i=1,2$, since the sets in \mathcal{C}_{i} are disjoint, \mathcal{C}_{i} is trivally a crossing family and g_{i} is trivially crossing submodular. The system $M^{\mathrm{T}} y \leq b$ is exactly

$$
\begin{array}{ll}
y\left(\delta^{+}(U)\right)-y\left(\delta^{-}(U)\right) \leq g_{1}(U), & \forall U \in \mathcal{C}_{1}, \\
y\left(\delta^{+}(U)\right)-y\left(\delta^{-}(U)\right) \leq g_{2}(U), & \forall U \in \mathcal{C}_{2} .
\end{array}
$$

Let $y_{0} \in \mathbb{Q}^{A}$ be the unique solution to the system $M^{\mathrm{T}} y=b$.
Now, we arbitrarily add edges to D_{0} to create a weakly connected digraph $D=(V, A)$. For each new arc $e \in A \backslash A_{0}$, add a constraint $y_{e} \leq 1$. This
results in a system $\left(M^{\prime}\right)^{\mathrm{T}} y \leq b^{\prime}$, where

$$
M^{\prime}=\left[\begin{array}{cc}
M & M^{\prime \prime} \\
0 & I
\end{array}\right], \quad b^{\prime}=\left[\begin{array}{c}
b+b^{\prime \prime} \\
\mathbf{1}
\end{array}\right],
$$

where each row of $M^{\prime \prime}$ is the vector $\gamma(U):=\delta_{A \backslash A_{0}}^{+}(U)-\delta_{A \backslash A_{0}}^{-}(U)$ for $U \in \mathcal{C}_{1}$ and for $U \in \mathcal{C}_{2}$, and where each component of $b^{\prime \prime}$ is $\mathbf{1}^{\mathrm{T}} \gamma(U)$ for $U \in \mathcal{C}_{1}$ and for $U \in \mathcal{C}_{2}$. By Schur's formula, $\operatorname{det}\left(M^{\prime}\right)=\operatorname{det}(M) \cdot \operatorname{det}(I)=\operatorname{det}(M)$. Hence, $\left|\operatorname{det}\left(M^{\prime}\right)\right| \geq 3$. Let

$$
y^{*}=\left[\begin{array}{c}
y_{0} \\
1
\end{array}\right] .
$$

It is easy to check that y^{*} is the unique solution to the system $\left(M^{\prime}\right)^{\mathrm{T}} y=b$.
With a computer program and the procedure described above, one can find counterexamples to Conjecture 2 with arbitrarily large sizes.

References

[1] Ahmad Abdi, Gérard Cornuéjols, and Giacomo Zambelli. Arc connectivity and submodular flows in digraphs. https://www. ahmadabdi.com/ papers/connectedflip.pdf.

[^0]: ${ }^{1}$ See the last slide of their talk, available at https://app.icerm.brown.edu/assets/ 403/4951/4951_3700_Abdi_032820231400_Slides.pdf.

