A COUNTEREXAMPLE TO BOX-HALF-INTEGRALITY OF THE INTERSECTION OF CROSSING SUBMODULAR FLOW SYSTEMS

MICHEL X. GOEMANS YUCHONG PAN

We say that a family \mathcal{C} of subsets of a ground set V is crossing if for all $U, W \in \mathcal{C}$ with $U \cap W \neq \emptyset$ and $U \cup W \neq V$, we have $U \cap W, U \cup W \in \mathcal{C}$, and that \mathcal{C} is cross-free if for all $U, W \in \mathcal{C}$, we have $U \subseteq W$ or $W \subseteq U$ or $U \cap W = \emptyset$ or $U \cup W = V$. We say that a set function $f : \mathcal{C} \to \mathbb{R}$ is crossing submodular if for all $U, W \in \mathcal{C}$ with $U \cap W \neq \emptyset$ and $U \cup W \neq V$,

 $f(U \cap W) + f(U \cup W) \le f(U) + f(W).$

In [1], Abdi, Cornuéjols and Zambelli proved the following theorem:

Theorem 1 (Abdi, Cornuéjols and Zambelli, 2023, [1]). Let D = (V, A) be a weakly connected digraph. Let C_i be a crossing family over V and $f_i : C_i \to \mathbb{Z}$ a crossing submodular function for i = 1, 2. Then

$$y\left(\delta^{+}(U)\right) - y\left(\delta^{-}(U)\right) \leq f_{1}(U), \qquad \forall U \in \mathcal{C}_{1}, y\left(\delta^{+}(U)\right) - y\left(\delta^{-}(U)\right) \leq f_{2}(U), \qquad \forall U \in \mathcal{C}_{2},$$

is totally dual integral.

In addition, they gave an instance for which this system is not boxintegral. In a talk given in the "Combinatorics and Optimization" workshop at ICERM in 2023, Abdi proposed the following conjecture:¹

Conjecture 2. Let D = (V, A) be a weakly connected digraph. Let C_i be a crossing family over V and $f_i : C_i \to \mathbb{Z}$ a crossing submodular function for i = 1, 2. Then

$$y\left(\delta^{+}(U)\right) - y\left(\delta^{-}(U)\right) \le f_{1}(U), \qquad \forall U \in \mathcal{C}_{1}, y\left(\delta^{+}(U)\right) - y\left(\delta^{-}(U)\right) \le f_{2}(U), \qquad \forall U \in \mathcal{C}_{2},$$

is box-half-integral.

In this short note, we disprove this conjecture, making Theorem 1 more interesting.

Theorem 3. There exist a weakly connected digraph D = (V, A), crossing submodular functions $f_i : C_i \to \mathbb{Z}$ for i = 1, 2 and $\ell, u \in \mathbb{Z}^A$ such that

(1a)
$$y\left(\delta^+(U)\right) - y\left(\delta^-(U)\right) \le f_1(U), \quad \forall U \in \mathcal{C}_1,$$

¹See the last slide of their talk, available at https://app.icerm.brown.edu/assets/ 403/4951/4951_3700_Abdi_032820231400_Slides.pdf.

(1b)
$$y\left(\delta^+(U)\right) - y\left(\delta^-(U)\right) \le f_2(U), \quad \forall U \in$$

(1c)
$$\ell_e \le y_e \le u_e, \qquad \forall e \in A,$$

is not half-integral.

Proof. Let D = (V, A) be the weakly connected digraph in Figure 1a. Let C_1 and C_2 be families of subsets of V depicted in Figures 1b and 1c, with corresponding set functions $f_i : C_i \to \mathbb{Z}$ for i = 1, 2. Since each of C_1 and C_2 is a family of disjoint sets, C_1 and C_2 are trivially crossing families, and f_1 and f_2 are trivially crossing submodular. Let $\ell = -2 \cdot \mathbf{1} \in \mathbb{Z}^A$ and $u = \mathbf{1} \in \mathbb{Z}^A$. Let $y^* \in \mathbb{Z}^A$ be the vector defined in Figure 1d. It is easy to check that y^* is a feasible solution to the system (1).

(A) The digraph D = (V, A) in the proof of Theorem 3.

(c) The crossing family C_2 and the crossing submodular set function $f_2: C_2 \to \mathbb{Z}$ in the proof of Theorem 3.

 $\mathcal{C}_2,$

(B) The crossing family C_1 and the crossing submodular set function $f_1 : C_1 \to \mathbb{Z}$ in the proof of Theorem 3.

(D) A solution $y^* \in \mathbb{Z}^A$ to the system of linear inequalities in the proof of Theorem 3.

To see that y^* is an extreme point of the polyhedron determined by the system (1), it suffices to exhibit 6 linearly independent inequalities that

are tight at y^* . Since $y_e = u_e = 1$ for $e \in \{(v_1, v_2), (v_3, v_4), (v_5, v_6)\}$, we obtain 3 inequalities that are tight at y^* . In addition, it is easy to check $y(\delta^+(U)) - y(\delta^-(U)) = f_1(U) = 1$ for all $U \in \mathcal{C}_1$ and $y(\delta^+(U)) - y(\delta^-(U)) = f_2(U) = 0$ for all $U \in \mathcal{C}_2$, yielding 3 more inequalities that are tight at y^* . Moreover, it can be checked that these 6 inequalities are linearly independent (e.g., by computing the determinant of the matrix whose columns are these vectors). This gives 6 linearly independent inequalities that are tight at y^* , completing the proof.

Remark. The intuition of the proof is the following. Let M_1 and M_2 be matrices with the same number of rows such that each row consists of at most one 1-entry and at most one -1-entry, with all other entries equal to 0. Then M_1 and M_2 are submatrices of incidence matrices of digraphs and are hence totally unimodular. Let

$$M = \left[\begin{array}{c} M_1 & M_2 \end{array} \right].$$

Note that M is not necessarily totally unimodular, and there exist instances such that $|\det(M)|$ can be made arbitrarily large. Take such a square matrix M with $|\det(M)| \ge 3$. Let b be an integral vector such that $(M^T)^{-1}b$ is not half-integral. In the counterexample given in the proof,

$$M = \begin{bmatrix} 1 & 0 & | & -1 \\ 0 & -1 & | & -1 \\ 1 & -1 & | & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix},$$

where det(M) = -3.

Let k_1 and k_2 be the numbers of columns of M from M_1 and from M_2 , respectively. Let m be the number of rows of M. Let $D_0 = (V, A_0)$ be a digraph, where $V = \{0, \ldots, k_1\} \times \{0, \ldots, k_2\}$ and A_0 has m arcs, one corresponding to each row of M. For each row of M, let α, α' be the indices of the 1-entries from M_1 and from M_2 (or 0 if not present), respectively, and β, β' the indices of -1-entries from M_1 and from M_2 (or 0 if not present), respectively. Then this row corresponds to the arc $((\alpha, \alpha'), (\beta, \beta'))$.

Let $S_i = \{i\} \times \{0, \ldots, k_2\}$ for each $i \in [k_1]$. Let $T_i = \{0, \ldots, k_1\} \times \{i\}$ for each $i \in [k_2]$. Let $C_1 = \{S_1, \ldots, S_{k_1}\}$ and $C_2 = \{T_1, \ldots, T_{k_2}\}$. Let $g_1 : \mathcal{C}_1 \to \mathbb{Z}$ be defined by $g_1(S_i) = b_i$ for all $i \in [k_1]$, and let $g_2 : \mathcal{C}_2 \to \mathbb{Z}$ be defined by $g_2(T_i) = b_{i+k_1}$ for all $i \in [k_2]$. For i = 1, 2, since the sets in \mathcal{C}_i are disjoint, \mathcal{C}_i is trivally a crossing family and g_i is trivially crossing submodular. The system $M^{\mathrm{T}}y \leq b$ is exactly

$$y\left(\delta^{+}(U)\right) - y\left(\delta^{-}(U)\right) \leq g_{1}(U), \qquad \forall U \in \mathcal{C}_{1}, y\left(\delta^{+}(U)\right) - y\left(\delta^{-}(U)\right) \leq g_{2}(U), \qquad \forall U \in \mathcal{C}_{2}.$$

Let $y_0 \in \mathbb{Q}^A$ be the unique solution to the system $M^{\mathrm{T}}y = b$.

Now, we arbitrarily add edges to D_0 to create a weakly connected digraph D = (V, A). For each new arc $e \in A \setminus A_0$, add a constraint $y_e \leq 1$. This

results in a system $(M')^{\mathrm{T}}y \leq b'$, where

$$M' = \begin{bmatrix} M & M'' \\ 0 & I \end{bmatrix}, \qquad b' = \begin{bmatrix} b+b'' \\ \mathbf{1} \end{bmatrix},$$

where each row of M'' is the vector $\gamma(U) := \delta^+_{A \setminus A_0}(U) - \delta^-_{A \setminus A_0}(U)$ for $U \in \mathcal{C}_1$ and for $U \in \mathcal{C}_2$, and where each component of b'' is $\mathbf{1}^{\mathrm{T}}\gamma(U)$ for $U \in \mathcal{C}_1$ and for $U \in \mathcal{C}_2$. By Schur's formula, $\det(M') = \det(M) \cdot \det(I) = \det(M)$. Hence, $|\det(M')| \geq 3$. Let

$$y^* = \begin{bmatrix} y_0 \\ \mathbf{1} \end{bmatrix}.$$

It is easy to check that y^* is the unique solution to the system $(M')^T y = b$.

With a computer program and the procedure described above, one can find counterexamples to Conjecture 2 with arbitrarily large sizes.

References

 Ahmad Abdi, Gérard Cornuéjols, and Giacomo Zambelli. Arc connectivity and submodular flows in digraphs. https://www.ahmadabdi.com/ papers/connectedflip.pdf.