
Optimization Problems on Network
Flows with Degree Constraints

by

Yuchong Pan

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

BECHELOR OF SCIENCE

in

The Faculty of Science

(Combined Honours Computer Science and Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April 2021

© Yuchong Pan 2021

Abstract

In a vertex-capacitated directed graph with sources and sinks, we would like
to concurrently route demands from the sources to the sinks. This model
has many applications in the real world. However, conditions in the reality
usually incur new side constraints to this general model. For instance, the
next-hop routing in Internet protocol (IP) networks requires each router to
have one single next destination, called the next hop, for each incoming
packet destined to an IP address. A flow with this property is said to be
confluent. If this constraint is relaxed to allow d next destinations at each
vertex, then such a flow is said to be d-furcated. In general, side constraints
concerning bounded out-degree of each vertex give rise to network flows with
degree constraints. Such constraints contribute to simplicity of resulting
network flow models.

Given a network flow model, several optimization problems can be asked.
For instance, how the demands can be routed so that the flow does not
exceed the capacity at each vertex too much? Another natural question is
to find a subset of the demands with the maximum amount which can be
routed subject to the vertex capacities. In this thesis, we survey algorithms
that find approximate solutions close to optimum values within theoretically
guaranteed factors.

ii

Preface

This thesis is a survey of existing results in the literature for network flows
with degree constraints, and therefore does not contain original research.
Chapter 2 contain several classic results on maximum flow algorithms, the
parametric push-relabel algorithm, and their applications in optimization
problems on fractional flows. Chapter 3 is based upon the work of Chen
et al. [2]. Chapter 4 is based upon the work of Donovan et al. [7]. Section
4.5 is from the unpublished journal version of [7].

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Figures . vi

List of Algorithms and Procedures viii

Acknowledgements . ix

Dedication . xii

1 Introduction . 1
1.1 Definitions . 3
1.2 Thesis Organization . 4

2 Fractional Flows . 6
2.1 The Ford-Fulkerson Algorithm 6
2.2 The Push-Relabel Algorithm 9
2.3 A Parametric Maximum Flow Algorithm 12
2.4 The Minimum-Cut Capacity Function 16
2.5 The Perfect Sharing Problem 20
2.6 Finding a Minimum Congestion Flow 24

3 Confluent Flows . 26
3.1 Congestion Minimization . 27
3.2 Demand Maximization . 34
3.3 An Hk Lower Bound . 40

iv

Table of Contents

4 Bi-/d-furcated Flows . 43
4.1 Edge Contractions and Sawtooth Cycles 44
4.2 Acyclic Digon-Tree Representations 46
4.3 A Layered Structure of Digon Trees 50
4.4 Local Flow Redirection . 52
4.5 β-Confluent Flows . 54

5 Conclusion . 58
5.1 Open Questions . 58

Bibliography . 60

v

List of Figures

2.1 The three invariants maintained in the push-relabel algorithm. 11

3.1 An example of a sawtooth cycle, where the red edges denote
the reverse edges of edges from frontier vertices to sinks, and
square vertices denote sinks. 29

3.2 An example of a remote sink sj with its only in-neighbour v,
which has at least one other sink out-neighbour s`. 29

3.3 An illustration of the histogram of the congestion at a sink.
The area of the shaded region gives an upper bound of the
increase of A. 39

3.4 An instance which admits a fractional flow that satisfies all
demands with vertex congestion 1, yet which does not ad-
mit a confluent flow that satisfies all demands with vertex
congestion less than Hk, the kth harmonic number. 41

4.1 A comparison between the original directed graph G and its
auxiliary graph Ĝ, where red, blue and green edges denote
vertex, real and complementary edges, respectively. 47

4.2 An example of an undirected graph D̃ edge-induced by the
digons in a directed graph D. In this example, D does not
admit an acyclic digon-tree representation because D̃ is not
a forest. 48

4.3 An illustration of flow redirection in the original graph, where
s has at most one non-leaf neighbour vr and v1, . . . , vr−1 are
leaves in the underlying undirected graph. 53

vi

List of Algorithms and
Procedures

2.1 Augment(P, f). 8
2.2 The Ford-Fulkerson algorithm. 8
2.3 Push(v, f). 10
2.4 Push(v, f), modified. 11
2.5 The push-relabel algorithm. 12
2.6 ComputeMinCut(G, f). 13
2.7 The parametric push-relabel algorithm. 14
2.8 An algorithm for computing the smallest breakpoint of the

minimum-cut capacity function κ(λ). 19
2.9 An algorithm for the perfect sharing problem. 21

3.1 EliminateCycle(C, f). 27
3.2 Aggregate(v, ti), where v is a decided vertex with all outgoing

edges to the same sink ti. 28
3.3 EliminateSawtooth(C, f), where C is a sawtooth cycle as de-

fined in (3.1). 29
3.4 DeactivateSink(v, tj , t`), where tj is a remote sink whose only

in-neighbour is v that has another sink out-neighbour t`. . . . 30
3.5 A polynomial time algorithm to find a remote sink, provided

that there exist neither decided vertices nor sawtooth cycles in
the support network of f . 30

3.6 A (1+lg k)-approximation algorithm for congestion minimiza-
tion on confluent flows. 31

3.7 DeactivateSinkκ(v, tj , t`), where tj is a remote sink whose
only in-neighbour is v which has another sink out-neighbour t`. 35

3.8 GreedyPartition(Ti). 36
3.9 GreedySelect(Ti). 37
3.10 PostProcess(T1, . . . , Tk). 37

vii

LIST OF ALGORITHMS AND PROCEDURES

3.11 A 3-approximation algorithm for demand maximization on con-
fluent flows. 38

4.1 Contract(v). 45
4.2 A (1 + 1

d−1)-approximation algorithm for the congestion mini-
mization problem on d-furcated flows with d ≥ 2. 55

viii

Acknowledgements

In the past twenty-three years of my life, I have owed many thanks to people
who have raised me, taught me, supported me, inspired me and enlightened
me. I would not be the person I am today without them. Indeed, I never
thought I would write a thesis in theoretical computer science and continue
to pursue a doctoral degree in this intriguing area. The following people
helped me achieve this.

• Bruce Shepherd

Bruce is the reason I am here today. I remember first meeting Bruce
in his combinatorial optimization course. I was not able to register for
that course because of the university policy. Bruce did whatever he
could to help me, although he eventually failed—he wrote me “Not for
lack of trying but we finally have lost this ‘battle.’ ” Bruce is always
supportive in situations like this.

Bruce is a superb advisor. He encouraged me to try various open
questions, and was always there to help when I was stuck, providing
me with endless ideas and guidance. I came to UBC knowing almost
nothing about theoretical computer science, but Bruce witnessed me
to become a rookie researcher. He was at every step of the journey
to cheer for my success. I can feel how deeply Bruce cares about his
students. I need to worry nothing with Bruce as my advisor, and I am
forever grateful for working with Bruce.

• Nick Harvey

Nick gave us bonus questions to attempt in each assignment of his
complexity course, because of which he introduced me to Bruce. Nick
also taught me how to be a good teacher and how to write nice notes.
I am inspired by Nick’s passion and modesty about what he does.

Before I came to UBC, I was recommended many of Nick’s graduate
courses by Nick’s former student Keyulu. I wish that I could have
taken one of these courses as an undergrad at UBC.

ix

Acknowledgements

• Hu Fu

Hu always explains things with maximal clarity. Hu introduced me
to many topics and techniques in theoretical computer science such
as linear programming, semidefinite programming and approximation
algorithms, which are central to my research. It is a pity that Hu’s
algorithmic game theory course got cancelled in my last undergraduate
semester due to COVID-19.

• Algorithms Lab in UBC Computer Science

Talks and the summer reading group organized by the Algorithms Lab
allowed me to step out of my own research area, broaden my horizon in
different field of theoretical computer science, and enlarge my research
tool box. I would also like to thank the Algorithms Lab for financially
supporting me to attend conferences.

• Josh Zahl and Malabika Pramanik

Josh and Malabika introduced me to mathematics and taught me to
think mathematically. They are the reason I decided to major in and
work on mathematics.

• The competitive programming group at Shaoxing No. 1 High School,
jointly and separately: Zhizhou Ren, Wentao Wang, Yuanzheng Tao,
Zhaohui Ye, Yang Li and many others

I learned most algorithms I know so far while I was participating in
competitive programming in high school. People in the competitive
programming group at Shaoxing No. 1 High School are not only my
peers but also my teachers. We learned things together and taught
each other. You gave me the first taste of theoretical computer science,
and your persistence taught me what a good scholar should be like.

• Nadie Yiluo LiTenn

Yiluo’s passion about physics has constantly encouraged me to pursue
research that I truly love—that’s why I chose theoretical computer
science as my research area. Yiluo is a great friend to whom I can
always go when I was down. She gave me immense support by helping
me analyze problems with rationality and humour.

We share a common interest in aviation. Yiluo once told me that she
would probably like to be a commercial pilot during a sabbatical after
she became a professor. Surely you’re joking, Yiluo!

x

Acknowledgements

• Xingyu Zhou, Grace Yin and Adam Jozefiak

We worked on assignments and course projects together. I will never
forget the nights we spent in study rooms pondering difficult questions.
Indeed, I can hardly imagine how I would study mathematics and
computer science without them. It is always joyful and rewarding to
talk with Xingyu, Grace and Adam.

• Jerry Dong and Snow Wang

We did many things together in our leisure time—skiing on Cypress
Mountain, making dumplings, exploring restaurants, taking a trip to
the Sunshine Coast, cooking New Year’s Eve Dinner, etc. You made
my undergraduate years colourful. You are like my family in Canada.

• Hong Feng

Mom, nothing is possible without your unconditional love, support
and sacrifice. Mom is always positive, believing that I am able to
do anything. Mom is not a mathematician, but she taught me to do
mathematics intuitively when I was very young. Mom also taught me
to make my own decisions, and backed every decision I made.

Thank you. You have all made this thesis possible, directly or indirectly.
I also owe deep gratitude to many more people not on the list; there are too
many people who have left a mark in my life and to whom my gratitude is
beyond words.

Yuchong Pan
Vancouver, British Columbia
April 2021

xi

Dedicated to my late great-grandfather.

“I want to be a scientist when I grow up.”

— Me, responding to my great-grandfather

xii

Chapter 1

Introduction

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth.

— Robert Frost, The Road Not Taken

Flows in networks are ubiquitous. They naturally model phenomena
in the real world, such as transportation in a highway system, routing in
a telecommunication network, currents in an electrical circuit, commodity
delivery in a logistical task, etc. In the most general form, each of these
problems can be abstracted into a graph of vertices and edges, with several
ingredients:

• A set of sources, which is a subset of vertices, to send demands;

• A set of sinks, which is a subset of vertices, to receive demands;

• Capacities on edges or vertices, which indicate the amount of flow
allowed to pass on each edge or through each vertex;

• Costs on edges, which indicate the unit cost of flow that passes on
each edge or through each vertex;

• Flows on edges which satisfy capacity constraints (i.e., the flow on
each edge or through each vertex must not exceed the capacity) and
conservation constraints (i.e., the flow into a vertex must equal the
flow out of the vertex).

In addition to their most natural applications, flows in networks are able to
model and solve many seemingly unrelated problems. Examples are cluster-
ing, image segmentation, project selection, railway scheduling and machine
assignment. General problems on network flows have been well studied.
See, for instance, the Ford-Fulkerson algorithm for finding a maximum flow

1

Chapter 1. Introduction

[11] and the successive shortest path algorithm (which can be viewed as a
generalization of the Ford-Fulkerson algorithm) for finding a minimum-cost
flow [8]. We will review some of classical results for general network flow
problems in this chapter.

The most direct and important applications of flows in networks are per-
haps due to telecommunication networks. However, new technologies often
impose additional constraints to flow networks. For instance, in Internet
protocol (IP) routing, a router has the next hop table which contains an
entry of the next hop for each IP address. If a router receives a packet for
an IP address, it simply forwards the packet to the next router associated
with the IP address stored in the table. Therefore, all flows of packets for
the same IP address that pass through a vertex must exit on a single out-
going edge. A flow in a directed network with this additional constraint is
said to be confluent. Other examples include bifurcated flows where a router
is allowed to have d next hops for each IP address, and unsplittable flows
where each source must send all of its demands along a single path, which
is inspired by the SONET (synchronous optical networks) standard.

Kleinberg [17, 18] introduces the following related optimization problems
on single-sink unsplittable flows. These questions can also be generalized to
other classes of network flows with additional constraints.

• Minimum Congestion. What is the smallest α ≥ 1 such that if all
(edge or vertex) capacities are multiplied by α, then a feasible flow of
a certain class that satisfies all demands exists?

We call this minimum value of α the congestion of the network, or the
congestion of such a feasible flow.

• Maximum Routable Demands. Find a subset of the sources whose
demands can be routed by a feasible flow of a certain class and which
maximizes the routed demands.

• Minimum Number of Rounds. How many rounds are necessary
to route all demands by a feasible flow of a certain class?

Each of the above problems is considered in a setting with no edge costs.
Equivalently, we consider a situation where the costs are uniform, i.e., where
all costs equal the same value. In addition to these problems, the problem
of Minimum Congestion with Arbitrary Edge Costs, a “constrained”
variant of the well-studied minimum-cost flow problem, is often considered.
Since this problem has two objective functions, i.e., cost and congestion, we
use a bicriteria approximation (α, β) to measure a feasible solution to this

2

1.1. Definitions

problem, in which the congestion of the flow is at most α, and the cost of
the flow is at most β times the optimum cost of a flow with no additional
constraints.

In this thesis, we survey techniques and approximation algorithms that
approximately solve the aforementioned optimization problems on network
flows with degree constraints.

1.1 Definitions

Before delving into techniques and approximation algorithms on network
flows, we provide mathematical definitions for network flows with degree
constraints in the most general form, which we use throughout this thesis. In
this thesis, we consider congestion minimization and demand maximization
only. Therefore, we assume that edge costs are uniform (equivalently, the
cost of each edge equals 1).

Let G = (V,E) be a directed graph with vertex capacities c : V → R+
1

and a set T = {t1, . . . , tk} of sinks. We denote n = |V | and m = |E|, and
use δ+G(v) and δ−G(v) to denote the set of outgoing and incoming edges at v
in G, respectively. Let d : V → R+ be demands on vertices. For each vertex
v, we would like to route d(v) units of flow from v to sinks. (Therefore, the
set of sources, denoted as S, is {v ∈ V : d(v) > 0}.) Given a subset E′ of E,
we use f(E′) =

∑
e∈E′ f(e) as a shorthand. A flow is a function f : E → R+

that satisfies the flow conservation equations:

f
(
δ+G(v)

)
− f

(
δ−G(v)

)
= d(v), ∀v ∈ V \ T.

The vertex congestion of a vertex v, denoted by f(v) with an abuse of
notation, is defined to be (f(δ−G(v)) + d(v))/c(v). We say that a flow f is
feasible if f(δ−G(v)) + d(v) ≤ c(e) for each vertex v. The vertex congestion
of a flow f is defined to be the minimum vertex congestion of the vertices.

We can apply contraints on the maximum out-degree of the support
network of a flow. We say that a flow is d-furcated if the out-degree of each
vertex is at most d in the support network. In particular, the special cases
of d-furcated network flows where d ∈ {1, 2,∞} are considered in this thesis:

• d = ∞ (Fractional flows). Each vertex can send flow fractionally
to any number of outgoing edges.

1We add the subscript + to a set of real numbers to denote the subset of non-negative
numbers in the set.

3

1.2. Thesis Organization

• d = 1 (Confluent flows). Each vertex can send flow to at most one
outgoing edge. In other words, the support network of the flow forms
vertex-disjoint in-arborescences rooted at the sinks.

• d = 2 (Bifurcated flows). Each vertex can send flow to at most two
outgoing edges.

To simplify the problems in question, we assume the special case of unit
vertex capacities (i.e., c(v) = 1 for each vertex v) throughout this thesis.
Given this assumption, the vertex congestion of a vertex v is f(δ−G(v))+d(v),
and a flow is feasible if f(δ−G(v)) + d(v) ≤ 1. The more general versions
of many optimization problems with non-uniform capacities, however, are
siginificantly more difficult to solve than their uniform-capacity counterparts
and wide open to the best of our knowledge. For confluent flows, Chen
et al. [2] write “an interesting direction for future research is to extend
some or all of our results to graphs with heterogeneous vertex capacities.”
For d-furcated flows with d ≥ 2, Donovan et al. [7] asks “what happens
in networks with non-uniform capacities or costs?” The difficulty of non-
uniform capacities for congestion minimization, according to Chen et al. [2],
stems from the fact that the most congested vertex in a flow is no longer
necessarily one of the sinks.

Without loss of generality, we assume that a vertex with no incoming
edges must have a positive demand; otherwise, flows on its outgoing edges
must be zero, and these outgoing edges can be removed from the graph.
Moreover, we assume that sinks are exactly vertices with no outgoing edges.
If there is a non-sink vertex v with no outgoing edges, then we must have
f(δ−G(v)) = 0 because f(δ+G(v)) = 0, f(δ−G(v)) ≥ 0 and d(v) ≥ 0 due to the
flow conservation equations. Hence, we can remove v and all of its incoming
edges in this case. On the other hand, if there is a sink v with outgoing
edges, then we add a vertex w to V and to T , add an edge (v, w) to E, and
remove v from T .

1.2 Thesis Organization

Chapter 2 describes several classical algorithms on fractional flows; a great
portion of Chapter 2 is devoted to an application of the parametric push-
relabel algorithm of Gallo et al. [12] for finding a congestion-minimizing
fractional flow. The approximation algorithms in Chapter 3 and Chapter 4
assume a congestion-minimizing fractional flow as their starting point.

4

1.2. Thesis Organization

Chapter 3 studies congestion minimization and demand maximization
on confluent flows. Moreover, we give an instance which shows an Hk lower
bound for congestion minimization on confluent flows, where Hk is the kth

harmonic number.
Chapter 4 studies congestion minimization on d-furcated flows where

d ≥ 2. It is also shown that the technique presented in Chapter 4 can be
applied to solve congestion minimization on β-confluent flows.

Chapter 2, Chapter 3 and Chapter 4 are completely disjoint. A reader
who would like to learn only techniques and approximation algorithms for
network flows with degree constraints can skip Chapter 2.

5

Chapter 2

Fractional Flows

“Would you tell me, please, which way I ought to go from
here?”

“That depends a good deal on where you want to get to,”
said the Cat.

“I don’t much care where–” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.
“–so long as I get somewhere,” Alice added as an explanation.
“Oh, you’re sure to do that,” said the Cat, “if you only walk

long enough.”

— Lewis Carroll, Alice’s Adventures in Wonderland

Every approximation algorithm in the literature for network flows with
side constraints, to the best of our knowledge, rounds a fractional network
flow to a flow with certain side constraints. In this chapter, we examine
several classic algorithms and reductions to them for solving optimization
problems on fractional network flows, i.e., network flows without degree
constraints.

2.1 The Ford-Fulkerson Algorithm

As mentioned in Chapter 1, one of the basic optimization problems on net-
work flows is Maximum Routable Demand: Find a subset of the sources
whose demands can be routed by a feasible flow and which maximizes the
routed demand. We say that this problem asks for an all-or-nothing network
flow in the sense that such a flow routes either all demand or zero demand
for each source. In the context of fractional network flows, we loosen this
requirement by allowing a fractional portion of the demand of a source to be
routed (alternatively, our reduction below to the Ford-Fulkerson algorithm
also works if the demands of all sources equal to 1 or the same value). The
special case where there is exactly one source and one sink is the celebrated
(single-source single-sink) maximum flow problem:

6

2.1. The Ford-Fulkerson Algorithm

Given a directed graph G = (V,E), a source s ∈ V , a sink t ∈ V ,
and edge capacities c : E → R+, what is a network flow f with
the maximum value |f |, i.e., the amount of flow that goes out of
the source s?

Ford and Fulkerson [11] give a pseudo-polynomial-time greedy algorithm,
called the Ford-Fulkerson algorithm, which solves the maximum flow prob-
lem. The running time of the Ford-Fulkerson algorithm with integral ca-
pacities is O(Cm), where C is the sum of the edge capacities out of the
source s. The basic idea of the Ford-Fulkerson algorithm is to successively
augment along an s-t path in a residual graph along which each of the edges
has available capacity. Such s-t paths are called augmenting paths. There
also exist strongly-polynomial-time variations of the Ford-Fulkerson based
upon different ways to find augmenting paths. For instance, the Edmonds-
Karp algorithm uses breadth-first search to find a shortest augmenting path
each time, achieving a running time of O(m2n) [8]. Dinitz’s algorithm is
similar to the Edmonds-Karp algorithm but uses additional techniques, in-
cluding the level graph and blocking flows, to achieve a better running time
of O(mn2) [5]. This running time of Dinitz’s algorithm can be further im-
proved to O(mn log n) by utilizing data structures such as dynamic trees. In
this thesis, we would like to focus on high-level algorithmic ideas instead of
delving too much into details of specific implementations or data structures.
Therefore, we present below the most general Ford-Fulkerson algorithm only.

Two key ingredients of the Ford-Fulkerson algorithm are residual graphs
and augmenting paths. Let G = (V,E) be a directed graph with edge capaci-
ties c : E → R+. Let s, t ∈ V be the source and the sink, respectively. Given
a flow f : E → R+, we define the residual graph Gf (with edge capacities)
by the following:

• the vertex set of Gf is V ;

• each e ∈ E with f(e) < c(e) is also in Gf with capacity c(e) − f(e),
called a forward edge;

• for each (u, v) ∈ E with f(e) > 0, there exists an edge (v, u) in Gf
with capacity f(e), called a backward edge.

An s-t path2 in the residual graph Gf is called an augmenting path. The min-
imum capacity of an edge along an augmenting path in the residual graph Gf

2The definition of paths is ambiguous in the literature. Throughout this thesis, a walk
is a sequence of vertices v1, . . . , v` such that (vi, vi+1) is in the edge set for each i ∈ [`−1],
and a path is a walk which does not repeat vertices.

7

2.1. The Ford-Fulkerson Algorithm

is called the bottleneck of the augmenting path, denoted by bottleneck(P, f).
Moreover, we define the operation Augment(P, f) of augmenting along an
augmenting path P in Gf in Procedure 2.1. The Ford-Fulkerson algorithm,
given in 2.2, repeatedly searches for an augmenting path P in the residual
graph Gf , and augments along P .

1 b← bottleneck(P, f)
2 foreach forward edge e along P do
3 f(e)← f(e) + b
4 foreach backward edge (u, v) along P do
5 f(v, u)← f(v, u)− b

Procedure 2.1: Augment(P, f).

1 f(e)← 0 for all e ∈ E
2 repeat
3 search for an augmenting path in Gf
4 if an augmenting path P exists then
5 Augment(P, f)
6 else
7 return f

Algorithm 2.2: The Ford-Fulkerson algorithm.

The correctness of the Ford-Fulkerson algorithm follows from the follow-
ing two straightforward lemmas about the operation Augment(P, f).

Lemma 2.1. Let f : E → R+ be a flow in a flow network (G, c). Then the
augmentation along an augmenting path P in Gf results in a flow f ′ with
value |f |+ b, where b is the bottleneck along P with respect to f .

Lemma 2.2. Let f : E → R+ be a flow in the flow network. If there is no
augmenting path in Gf , then f is a maximum flow.

In addition, we give the running time of O(Cm) with integral edge ca-
pacities claimed above.

Lemma 2.3. Suppose that all edge capacities are integers. Let

C =
∑

e∈δ+G(s)

c(e).

8

2.2. The Push-Relabel Algorithm

The Ford-Fulkerson algorithm terminates in at most C rounds. The running
time of the Ford-Fulkerson algorithm is hence O(Cm).

On the other hand, the case of multiple sources and multiple sinks can
be reduced to the single-source single-sink case. We add a super source s∗

and a super sink t∗. For each source v in the original graph, we connect an
edge from s∗ to v with edge capacity d(v). For each sink v in the original
graph, we connect an edge from v to t∗ with edge capacity ∞. It can be
shown that the single-source single-sink maximum flow problem in the new
graph gives the maximum demand in the original network.

A cut is a 2-part partition (X,X) of the vertex set V such that s ∈ X
and that t ∈ X. The capacity of a cut (X,X) is defined to be

c
(
X,X

)
=

∑
(v,w)∈E
v∈X,w∈X

c(v, w).

Finally, the celebrated maximum-flow minimum-cut theorem of Ford and
Fulkerson [11] states the following:

Theorem 2.4 (Maximum-Flow Minimum-Cut Theorem, [11]). The maxi-
mum flow value equals the minimum cut capacity in a flow network.

Moreover, the proof of the maximum-flow minimum-cut theorem in [11]
shows that (X,X) is a minimum cut in G, where X is the set of vertices
reachable from s in the residual graph Gf . In particular, we use this result
to compute a minimum cut in Section 2.3.

2.2 The Push-Relabel Algorithm

The Ford-Fulkerson algorithm and its variants are called augmenting path
algorithms for the maximum flow problem because of their Augment(P, f)
operation. In an augmenting path algorithm, we maintain a feasible flow at
any point of the algorithm, and aim to disconnect the source and the sink in
the residual graph. In this section, we introduce a second paradigm called
the push-relabel algorithm, due to Goldberg and Tarjan [14], for computing
the maximum flow problem. In contrast to the Ford-Fulkerson algorithm,
this new paradigm maintains that the source and the sink are disconnected
in the residual graph, and aim to construct a feasible flow as the algorithm
progresses. We include the push-relabel algorithm in this chapter because
we would eventually like to reduce an algorithm for finding a congestion-
minimizing fractional flow to the push-relabel algorithm in Section 2.6.

9

2.2. The Push-Relabel Algorithm

In addition to residual graphs introduced in Section 2.1, the push-relabel
algorithm has an additional key ingredient—the notion of a preflow. A
preflow is a function f : E → R+ that satisfies the capacity constraints:

f(e) ≤ c(e) ∀e ∈ E,

and the relaxed conversation constraints:

f
(
δ−G(v)

)
≥ f

(
δ+G(v)

)
, ∀V \ {s}.

Note that the demand function d : V → R+ is not present in the single-
source single-sink maximum flow problem. In other words, a preflow is a
feasible flow except that the flow conservation constraints are relaxed so that
the amount of flow entering a vertex v ∈ V \ {s} is at least the amount of
flow leaving v. Given a preflow f : E → R+, we define the excess of a vertex
v ∈ V \ {s, t} to be

εf (v) = f
(
δ−G(v)

)
− f

(
δ+G(v)

)
.

Note that a preflow is a feasible flow if and only if each vertex v ∈ V \ {s, t}
has a zero excess. The general idea of the push-relabel algorithm is to
gradually transform a preflow towards a feasible flow.

In the augmenting path paradigm, since we maintain a feasible flow
throughout the algorithm, we are restricted to augmentations along an en-
tire s-t path in the residual graph in order to preserve the conservation
constraints. In the push-relabel paradigm, however, we are granted more
flexibility by the relaxed conservation constraints of preflows. Therefore, we
define the operation Push(v, f) of augmenting along an outgoing edge from
a vertex v in Gf in Procedure 2.3. If b = εf (v) in Push(v, f), then the push
is saturating ; otherwise, the push is non-saturating.

1 choose an outgoing edge e from v in Gf
2 b← min{εf (v), capacity of e in Gf}
3 if e is forward then
4 f(e)← f(e) + b
5 else
6 f(e)← f(e)− b

Procedure 2.3: Push(v, f).

The Push(v, f) operation is not sufficient, as it is possible that the algo-
rithm pushes flow along a cycle indefinitely. To ensure that the algorithm

10

2.2. The Push-Relabel Algorithm

1. h(s) = n.

2. h(t) = 0.

3. For each edge (v, w) in the residual graph, h(v) ≤ h(w) + 1.

Figure 2.1: The three invariants maintained in the push-relabel algorithm.

terminates, we define the height function h : V → Z+ with the invariants
outlined in Figure 2.1 to be maintained throughout the algorithm.

Recall from the opening paragraph of this section that, in contrast to
the augmenting path paradigm, we would like the source and the sink to be
disconnected in the residual graph, and gradually construct a feasible flow
throughout the algorithm. Intuitively, the height decreases by at most one
along an edge in the residual graph. Therefore, there is no s-t path in the
residual graph. By Lemma 2.2, it follows that if a preflow f : E → R+

is a feasible flow, then f is a maximum flow. Accordingly, we modify the
Push(v, f) operation in Procedure 2.4 so that we only push flow “downhill,”
i.e., from a vertex v to another vertex w with h(v) = h(w) + 1. The push-
relabel algorithm, given in Algorithm 2.5, repeatedly choose the higheset
vertex v with a positive excess, and either pushes flow from v (if possible) or
“relabel” h(v) to make a push from v possible. The initialization from the
first four lines of Algorithm 2.5 ensures that the three invariants outlined in
Figure 2.1 are satisfied initially.

1 choose an outgoing edge (v, w) from v in Gf with h(v) = h(w) + 1
2 b← min{εf (v, w), capacity of (v, w) in Gf}
3 if (v, w) is forward then
4 f(v, w)← f(v, w) + b
5 else
6 f(v, w)← f(v, w)− b

Procedure 2.4: Push(v, f), modified.

It is straightforward to verify that the three invariants outlined in Figure
2.1 are maintained throughout the push-relabel algorithm. By the discussion
in the previous paragraph, if this algorithm terminates, then the flow f is a
maximum flow. This gives the following two lemmas.

Lemma 2.5. The three invariants outlined in Figure 2.1 are maintained

11

2.3. A Parametric Maximum Flow Algorithm

1 h(s)← n
2 h(v)← 0 for all v ∈ V \ {s}
3 f(e)← c(e) for all e ∈ δ+G(s)
4 f(e)← 0 for all e ∈ E \ δ+G(s)
5 while ∃v ∈ V \ {s, t} with εf (v) > 0 do
6 choose such v with the maximum h(v)
7 if ∃(v, w) ∈ δGf

(v) with h(v) = h(w) + 1 then

8 Push(v, f)
9 else

10 h(v)← 1 + min{d(w) : (v, w) ∈ δGf
(v)} // Relabel(v, f)

Algorithm 2.5: The push-relabel algorithm.

throughout Algorithm 2.5.

Lemma 2.6. If Algorithm 2.5 terminates, then f is a maximum flow.

It remains to show that the algorithm does terminate, and that the
running time of the algorithm is O(n3). We give this result as the following
theorem.

Theorem 2.7. Algorithm 2.5 terminates after O(n2) Relabel(v, f) opera-
tions and O(n3) Push(v, f) operations.

2.3 A Parametric Maximum Flow Algorithm

In this section, we present an algorithm due to Gallo et al. [12] that natu-
rally extends the push-relabel algorithm to solve the parametric maximum
flow problem. Later, we shall apply this algorithm to solve the perfect shar-
ing problem in Section 2.5 and eventually give an algorithm for finding a
congestion-minimizing fractional flow in Section 2.6.

In the parametric maximum flow problem, each edge capacity cλ(e) is a
function of a real-valued parameter λ that satisfies the following properties:

• cλ(e) is non-decreasing in λ for all e = (s, v) ∈ δ+G(s) with v 6= t;

• cλ(e) is non-increasing in λ for all e = (v, t) ∈ δ−G(t) with v 6= s;

• cλ(e) is constant for all e = (v, w) ∈ E with v 6= s, w 6= t;

• cλ(e) can be computed in constant time for all e ∈ E.

12

2.3. A Parametric Maximum Flow Algorithm

When the context is clear, a maximum flow in the parametric maximum
flow problem means a maximum flow in the network with a particular value
of the parameter λ. Moreover, the problem receives an increasing sequence
of parameter values λ1 < . . . < λ` and asks for a maximum flow for each
parameter value in the online fashion, meaning that a maximum flow for λi
is computed with no information about λj with j > i.

Note that if the value of the parameter λ is increased, then the capacities
of outgoing edges from s are increased and those of incoming edges to t are
decreased according to the previously outlined properties. The main idea of
this parametric maximum flow algorithm rests upon the fact that f remains
a preflow with the three invariants outlined in Figure 2.1 still satisfied if
we set f(e) by min{f(e), cλ(e)} for all e ∈ δ−G(t) and set f(e) be cλ(e) for
all e = (s, v) ∈ δ+G(s) with h(v) < n. Therefore, we can again apply the
push-relabel algorithm to compute a maximum flow.

Moreover, we use the remark in the last paragraph of Section 2.1 to
compute a corresponding minimum cut (X,X) for each parameter value λ,
where X is the set of vertices reachable from s in the residual graph Gf .
The minimum cuts (Xi, Xi) for the parameter values λi and their properties
are essential in Section 2.4. For all v, w ∈ V , define df (v, w) to be the
minimum number of edges from v to w in the residual graph Gf , or ∞ if
there exists no v-w path in Gf . We claim that this minimum cut (X,X) can
be computed by ComputeMinCut(G, f) defined in Procedure 2.6, and that
ComputeMinCut(G, f) does not decrease the heights of vertices. We note
that df (v, s) and df (v, t) for all v ∈ V can be obtained by two breadth-first
searches in O(m) time on the reverse graph of Gf from s and t, respectively.

1 h(v)← min{df (v, s) + n, df (v, t)} for all v ∈ V
2 X ← {v ∈ V : h(v) ≥ n}
3 return (X,X)

Procedure 2.6: ComputeMinCut(G, f).

Lemma 2.8. If f : E → R+ is a maximum flow on G = (V,E), then
ComputeMinCut(G, f) returns a minimum cut.

Lemma 2.9. ComputeMinCut(G, f) does not decrease h(v) for each v ∈ V .

Furthermore, Theorem 5.5 of Ford and Fulkerson [10] implies the follow-
ing lemma, which we shall use below.

13

2.3. A Parametric Maximum Flow Algorithm

Lemma 2.10. Let (Y, Y) be any minimum cut. Let (X,X) be the minimum
cut computed in ComputeMinCut(G, f). Then Y ⊆ X.

The discussion in the previous paragraphs leads to the parametric push-
relabel algorithm, given in Algorithm 2.7, which solves the parametric max-
imum flow problem and which also produces a corresponding minimum cut
(Xi, Xi) for each parameter value λi.

The correctness of Algorithm 2.7 is straightforward and follows from that
of the push-relabel algorithm. The running time of the näıve implementation
of Algorithm 2.7 is O(n2(`+m)). Moreover, Gallo et al. [12] note that the
running time of Algorithm 2.7 can be improved to O(n3+`n2) using a queue

and further to O((n + `)m log n2

m) using the dynamic tree data structures
[26, 27].

1 h(s)← n
2 h(v)← 0 for all v ∈ V \ {s}
3 f(e)← 0 for all e ∈ E
4 for i← 1, . . . , ` do
5 f(e)← min{f(e)cλi(e)} for all e ∈ δ−G(t)
6 f(e)← cλi(e) for all e = (s, v) ∈ δ+G(s) with d(v) < n
7 run the push-relabel algorithm with the current f and h

8 (Xi, Xi)← ComputeMinCut(G, f)

Algorithm 2.7: The parametric push-relabel algorithm.

Finally, we note that the minimum cuts (Xi, Xi) computed in Algorithm
2.7 satisfy the nesting property, which is stated in the following lemma.
Indeed, this property has been discovered in several application scenarios,
including record segmentation in shared databases [9] and critical load fac-
tors in two-processor distributed systems [28]. Algorithm 2.7 gives a direct
proof of this property.

Lemma 2.11 (Nesting Property). Given an increasing sequence of param-
eter values λ1 < . . . < λ`, Algorithm 2.7 produces a sequence of minimum
cuts (X1, X1), . . . (X`, X`) such that X1 ⊆ . . . ⊆ X`.

Proof. Let v ∈ V . By Lemma 2.9, ComputeMinCut(G, f) does not decrease
h(v). Note also that Relabel(v, f) in the push-relabel algorithm does not
decrease h(v). Therefore, h(v) does not decrease during the execution of Al-
gorithm 2.7 for all v ∈ V . Since ComputeMinCut(G, f) generates a minimum
cut (X,X) where X = {v ∈ V : h(v) ≥ n}, then X1 ⊆ . . . ⊆ X`.

14

2.3. A Parametric Maximum Flow Algorithm

Goldberg and Tarjan [13], Goldberg and Tarjan [14] and Gallo et al.
[12] note that a maximum flow need not be computed in order to obtain
a minimum cut only. This variant of the push-relabel algorithm, called
the minimum-cut parametric algorithm, modifies the original push-relabel
algorithm by changing the condition of the main while loop in Algorithm
2.5 to “∃v ∈ V \{s, t} with εf (v) > 0 and h(v) < n” and produces a minimum
cut (X,X) and a preflow f with εf (t) = c(X,X) upon termination. We shall
use this minimum-cut parametric algorithm to prove the following structural
lemma in a parametric flow network, which is a strengthening of Lemma
2.11:

Lemma 2.12. Let (X,X), (Y, Y) be minimum cuts for parameter values
λ1, λ2 with λ1 ≤ λ2, respectively. Then (X ∩ Y,X ∪ Y) and (X ∪ Y,X ∩ Y)
are minimum cuts for parameter values λ1, λ2, respectively.

Proof. We run the minimum-cut parametric algorithm for parameter values
λ1, λ2. Lemma 2.10 implies that h(v) ≥ n for all v ∈ X after computing a
minimum cut for λ1. Since (X,X) is a minimum cut for λ1, then f(e) =
cλ1(e) for each edge e across (X,X). The new while loop condition of the
minimum-cut parametric algorithm implies that f(e) = cλ2(e) for each edge
e across (X,X) after computing a minimum cut for λ2. Since (Y, Y) is
a minimum cut for λ2, then f(e) = cλ2(e) for each edge e across (Y, Y).
Furthermore, since εf (t) = cλ2(X,X), then εf (v) = 0 for all v ∈ Y \ {t}.

Therefore, each edge e across the cut (X ∩ Y,X ∪ Y) satisfies f(e) =
cλ2(e). Moreover, each v ∈ X ∪ Y \ {t} ⊆ Y \ {t} satisfies εf (v) = 0.
This implies that the capacity of (X ∩ Y,X ∪ Y) equals εf (t) and hence the
minimum cut capacity. Hence, (X ∪ Y,X ∩ Y) is a minimum cut for λ2.

We note that the reverse graph Gr of G with source t and sink s, given
parameter values λ2 and then λ1, satisfies the three invariants outlined in
Figure 2.1. Applying the minimum-cut parametric algorithm on Gr with
parameter values λ2, λ1 proves that (X ∩ Y,X ∪ Y) is a minimum cut for
λ1.

Lemma 2.12 directly implies the following “intermediate-value” corollary,
which plays an essential role in proving the concavity of the minimum-cut
capacity function in Section 2.4.

Corollary 2.13. Let (X,X), (Y, Y) be minimum cuts for parameter values
λ1, λ2 with X ⊆ Y and λ1 ≤ λ2. For all λ3 ∈ [λ1, λ2], there exists a
minimum cut (Z,Z) for λ3 such that X ⊆ Z ⊆ Y .

15

2.4. The Minimum-Cut Capacity Function

Proof. Let (Z ′, Z ′) be a minimum cut for λ3. Let Z = (Z ′ ∪X) ∩ Y . Then
X ⊆ Z ⊆ Y . Applying Lemma 2.12 on Z ′ and X shows that (Z ′∪X,Z ′ ∪X)
is a minimum cut for λ3. Applying Lemma 2.12 again on Z ′∪X and Y shows
that (Z,Z) is a minimum cut for λ3.

2.4 The Minimum-Cut Capacity Function

In this section, we analyze the properties of the minimum-cut capacity func-
tion κ(λ) and discuss algorithms to compute part or all of information about
the function. We shall use one of these algorithms to solve the perfect shar-
ing problem in Section 2.5. In a parametric flow network, we define the
minimum-cut capacity function κ(λ) to be the minimum-cut capacity for
the parameter value λ. In addition to the four properties outlined in Section
2.3, we assume that the edge capacity functions are linear functions through-
out this section; i.e., cλ(s, v) = a0(v) + λa1(v) for all (s, v) ∈ δ+G(s) and
cλ(v, t) = b0(v)−λb1(v) for all (v, t) ∈ δ−G(s), where a0(v), b0(v), a1(v), b1(v)
are constant coefficients and a0(v), b0(v) are non-negative for each v. We
shall first prove the following lemma, which describes the capacity of a cut
(X,X) in a parametric network.

Lemma 2.14. If (X,X) is a minimum cut for some parameter value λ0,
then the capacity of (X,X) is a linear function in the parameter value λ. In
particular,

cλ(X,X) = α+ λβ,

where

β =
∑

(s,v)∈E,v∈X

a1(v)−
∑

(v,t)∈E,v∈X

b1(v), α = cλ0(X,X)− λ0β.

Proof. Let (X,X) be a minimum cut for some parameter value λ0. Since
cλ(v, w) is constant for all (v, w) ∈ E with v 6= s and w 6= t, then for an

16

2.4. The Minimum-Cut Capacity Function

arbitrary parameter value λ, we have that

cλ
(
X,X

)
− cλ0

(
X,X

)
=

∑
(v,w)∈E,v∈X,w∈X

(cλ(v, w)− cλ0(v, w))

=
∑

(s,v)∈E,v∈X

(cλ(s, v)− cλ0(s, v))−
∑

(v,t)∈E,v∈X

(cλ(v, t)− cλ0(v, t))

=
∑

(s,v)∈E,v∈X

(λ− λ0) a1(v)−
∑

(v,t)∈E,v∈X

(λ− λ0) b1(v)

= (λ− λ0)

 ∑
(s,v)∈E,v∈X

a1(v)−
∑

(v,t)∈E,v∈X

b1(v)


= (λ− λ0)β

Therefore, we have that

cλ
(
X,X

)
= cλ0

(
X,X

)
+ (λ− λ0)β = cλ0

(
X,X

)
+ λβ − λ0β = α+ λβ.

This completes the proof.

A direct consequence of Lemma 2.11, Corollary 2.13 and Lemma 2.14 is
the following key lemma, which gives a characterization of the minimum-cut
capacity function κ(λ). The proof of this key lemma is an adaptation of the
proof of Lemma 1 in [15].

Lemma 2.15. The minimum-cut capacity function κ(λ) is a piecewise-
linear concave function with at most n− 2 breakpoints, where a breakpoint
is a value of λ at which the slope of κ(λ) changes.

Proof. Let λ1, λ2 be parameter values with λ1 < λ2. Let (X1, X1), (X2, X2)
be minimum cuts for λ1 and λ2, respectively. By Lemma 2.11, we can assume
without loss of generality that X1 ⊆ X2. Suppose that X2 \ X1 contains
no vertices adjacent to s or t that are neither s nor t (note that cλ(s, t)
is constant if (s, t) ∈ E). Since cλ(e) is constant for all e = (v, w) ∈ E
with v 6= s, w 6= t, then Lemma 2.14 implies that cλ(X1, X1) and cλ(X2, X2)
are linear functions in λ with the same slope. Therefore, cλ(X1, X1) and
cλ(X2, X2) are either coincident or parallel.

Case 1. cλ(X1, X1) and cλ(X2, X2) are coincident. Let λ3 ∈ [λ1, λ2].
By Corollary 2.13, there exists a minimum cut (X3, X3) for λ3 such that
X1 ⊆ X3 ⊆ X2. Suppose for the sake of contradiction that cλ3(X3, X3) <
cλ3(X1, X1). By Lemma 2.14, the slope of cλ(X3, X3) is at most the slope

17

2.4. The Minimum-Cut Capacity Function

of cλ(X1, X1) and at least the slope of cλ(X2, X2). Since cλ(X1, X1) and
cλ(X2, X2) have the same slope, then cλ(X3, X3) has the same slope. How-
ever, since cλ3(X3, X3) < cλ3(X1, X1), then cλ(X3, X3) < cλ(X1, X1) for any
parameter value λ. Hence, (X3, X3) is a cut whose capacity is less than the
capacity of (X1, X1) for λ1. This contradicts the minimality of (X1, X1) for
λ1. Since (X3, X3) is a minimum cut for λ3, then cλ3(X3, X3) = cλ3(X1, X1).

Case 2. cλ(X1, X1) and cλ(X2, X2) are parallel. Without loss of gen-
erality, we assume that cλ(X1, X1) > cλ(X2, X2) for any parameter value λ.
Then (X2, X2) is a cut whose capacity is less than the capacity of (X1, X1)
for λ1. This contradicts the minimality of (X1, X1) for λ1.

We have shown that if X2 \ X1 contains no vertices adjacent to s or t
that are neither s nor t, then κ(λ), cλ(X1, X1) and cλ(X2, X2) coincide on
[λ1, λ2]. In other words, if cλ(X1, X1) and cλ(X2, X2) have different slopes,
then X2 \ X1 contains a vertex adjacent to s or t that is neither s nor t.
Since there exist at most n − 2 vertices adjacent to s or t that are neither
s nor t, then there exist at most n− 2 parameter values λ1 < . . . < λ` and
minimum cuts (X1, X1), . . . , (X`, X`) for λ1, . . . , λ`, respectively, such that
the linear functions cλ(Xi, Xi) for i ∈ [`] have distinct slopes and that κ(λ)
coincides with cλ(Xi, Xi) on [λi, λi+1] for each i ∈ [`− 1].

Finally, we assume without loss of generality that X1 ⊆ . . . ⊆ X` by
Lemma 2.11. By Lemma 2.14, the slope of cλ(Xi, Xi) decreases as i increases
for i ∈ [`]. Therefore, κ(λ) is concave. This proves that κ(λ) is a piecewise-
linear concave function with at most n− 2 breakpoints.

The piecewise-linear concavity of the minimum-cut capacity function
κ(λ) suggests the possible existence of efficient algorithms for computing
part or all of the information about κ(λ). Gallo et al. [12] present three
algorithms for computing the smallest (or equivalently, the largest) break-
point of κ(λ), a maximum of κ(λ), and all breakpoints of κ(λ), respectively,
each of which uses the parametric push-relabel algorithm given in Section
2.3 as a subroutine. In the rest of this section, we shall discuss in detail
the algorithm for computing the smallest breakpoint of κ(λ) only, which we
shall use in Section 2.5 for solving the perfect sharing problem.

The algorithm for computing the smallest breakpoint of κ(λ) was initially
given by Gusfield [15] for solving the transmission scheduling problem stated
in [16]. Since κ(λ) is a piecewise-linear concave function with at most n− 2
breakpoints, we use L1(λ) = α1+λβ1, . . . , L`(λ) = α`+λβ` for some ` ∈ [n−
1] to denote the linear functions that correspond to the line segments in κ(λ),
i.e., κ(λ) = mini∈[`] Li(λ). Let λ0 be the smallest breakpoint of κ(λ). On one
hand, this algorithm can be regarded as an adaptation of Newton’s method

18

2.4. The Minimum-Cut Capacity Function

that computes the unique root of L1(λ)−mini∈{2,...,`} Li(λ). Therefore, this
algorithm starts with an initial guess λ∗ ≥ λ0 and sets

λ∗ ← λ∗ − L1 (λ∗)− Li (λ∗)

L′1 (λ∗)− L′i (λ∗)
= λ∗ − (α1 + λ∗β1)− (αi + λ∗βi)

β1 − βi
=
αi − α1

β1 − βi

at each step, where Li(λ) is the linear function corresponding to the line
segment of κ(λ) above λ∗, i.e., κ(λ∗) = Li(λ

∗). Alternatively, we can regard
this algorithm as initially fixing an interval [λ1, λ2] that includes λ0, and
shrinking the interval by strictly decreasing λ2 to the next breakpoint on
the left at each step. We give the formal description of this algorithm in
Algorithm 2.8, where we use LX(λ) = αX+λβX to denote the linear function
corresponding to the cut (X,X).

1 choose λ1, λ2 such that λ0 ∈ [λ1, λ2]

2 compute a minimum cut (X1, X1) for λ1
3 repeat

4 compute a minimum cut (X2, X2) for λ2
5 if LX1(λ2) = LX2(λ2) then
6 return λ2
7 else
8 λ2 ← (αX2 − αX1)/(βX1 − βX2)

Algorithm 2.8: An algorithm for computing the smallest breakpoint
of the minimum-cut capacity function κ(λ).

We note that the value of λ2 is strictly decreasing during the execu-
tion of the algorithm; indeed, the algorithm sets λ2 to be the value of λ
at the intersection of LX1(λ) and LX2(λ), i.e., the value of λ such that
LX1(λ) = LX2(λ). Therefore, the repeat loop of Algorithm 2.8 terminates
after at most n−2 iterations. Since λ2 is strictly decreasing, we can use the
parametric push-relabel algorithm on the reverse graph of G with source t
and sink s to maintain a minimum cut for the current value of λ2. Therefore,
Algorithm 2.8 runs in O(mn log n2

m) time, which improves the running time
of O(mn2 log n) in [15] by a factor of n. Moreover, we note that a variant
of Algorithm 2.8 can be used to compute the largest breakpoint of κ(λ)
by repeatedly increasing λ1 and running the parametric push-relabel algo-
rithm on G instead of repeatedly decreasing λ2 and running the parametric
push-relabel algorithm on the reverse graph of G.

Finally, there exist various valid choices of the initial values of λ1 and
λ2 in the first line of Algorithm 2.8. Gallo et al. [12] provide the following

19

2.5. The Perfect Sharing Problem

initial values of λ1 and λ2, where a(v) = 0 for all v ∈ V with (s, v) 6∈ δ+G(s)
and b(v) = 0 for all v ∈ V with (v, t) 6∈ δ−G(t).

λ1 = min
v∈V \{s,t}

a1(v)+b1(v)>0

b0(v)− a0(v)−
∑

u∈V \{s,t} c(u, v)

a1(v) + b1(v)
− 1,

λ2 = max
v∈V \{s,t}

a1(v)+b1(v)>0

b0(v)− a0(v) +
∑

u∈V \{s,t} c(u, v)

a1(v) + b1(v)
+ 1.

2.5 The Perfect Sharing Problem

A class of important applications of the parametric push-relabel algorithm
and the algorithms for computing information about κ(λ) is the class of flow
sharing problems. We shall briefly describe the motivation of flow sharing
problems. The food bank would like to supply food to a set of affected areas
during a famine so that each person would receive an equal share, while
maximizing the total amount of food supplied. In other words, the goal of
distributing food is to equalize the ratio of the food supplied for each area
to the population of that area. This specific example leads to the perfect
sharing problem. Other criteria of distribution may also be of interest. For
instance, one may want to distribute food so that the minimum ratio defined
above amongst all areas is maximized, or the maximum ratio amongst all
areas is minimized.

The formal formulation of general flow sharing problems is given in the
following. Let G = (V,E) be a capacitated directed graph with a single sink
s and a single sink t. Let S = {s1, . . . , sk} be the set of vertices adjacent to
s, called the (source) frontier vertices. Let w : S → R+ denote the positive
weight associated with each frontier vertice. Given a flow f : E → R+, we
define uf : S → R+ to denote the flow through the edge (s, s′) for each
frontier vertex s′, i.e., uf (s′) = f(s, s′) for each frontier vertex s′. The
following flow sharing problems are considered by Gallo et al. [12]:

• Perfect Sharing. Find a flow f whose value is maximized amongst
flows with uf (s′)/w(s′) equal for all s′ ∈ S.

• Maximin Sharing. Find a flow f that maximizes the smallest value
of uf (s′)/w(s′) for s′ ∈ S amongst maximum flows.

• Minimax Sharing. Find a flow f that minimizes the largest value
of uf (s′)/w(s′) for s′ ∈ S amongst maximum flows.

20

2.5. The Perfect Sharing Problem

• Optimal Sharing. Find a flow f that simultaneously maximizes the
smallest value of uf (s′)/w(s′) for s′ ∈ S and minimizes the largest
value of uf (s′)/w(s′) for s′ ∈ S amongst maximum flows.

• Lexicographic Sharing. Find a flow f that lexicographically max-
imizes the k-vector whose jth component is the jth smallest value of
uf (s′)/w(s′) for s′ ∈ S amongst maximum flows.

We briefly note that the above formulations of these five flow sharing
problems are said to be multiple-source one-sink in [12] (because the source
s is called the super-source and the frontier vertices s1, . . . , sk are called the
sources in [12]). It is equivalent to consider these five flow sharing problems
in the one-source multiple-sink fashion in which we replace G with its reverse
graph, interchange the source and the sink, and re-define the frontier vertices
to be those adjacent to the sink. Gallo et al. [12] and Megiddo [21] also note
that the last four problems outlined above can be formulated in the multiple-
source multiple-sink fashion defined analogously.

In this section, we chiefly discuss an algorithm based upon the parametric
push-relabel algorithm for solving the perfect sharing problem, to which we
shall reduce the problem of finding a congestion-minimizing fractional flow
in Section 2.6. Indeed, all of these five flow sharing problems can be solved
with the following parametric formulation: For each frontier vertex s′, we
set the capacity of the edge (s, s′) to be w(s′)λ, where λ ∈ [0,∞).

For the perfect sharing problem, Gusfield [15] proposes a very simple
algorithm, given in Algorithm 2.9, which is based upon the piecewise-linear
concavity of κ(λ). This algorithm was initially used to solve the transmission
scheduling problem, which we shall also discuss briefly below as an appli-
cation of the perfect sharing problem. It is straightforward to see that the
running time of Algorithm 2.9 is O(mn log n2

m). We prove the correctness of
Algorithm 2.9 in the following lemma.

1 cλ(s, s′)← w(s′)λ for all s′ ∈ S
2 λs ← smallest breakpoint of κ(λ)
3 return any maximum flow for λs

Algorithm 2.9: An algorithm for the perfect sharing problem.

Lemma 2.16. Algorithm 2.9 produces a flow f whose value is maximized
amongst flows with uf (s′)/w(s′) equal for all s′ ∈ S.

21

2.5. The Perfect Sharing Problem

Proof. If λ = 0, then c0(s, s
′) = 0 for each s′ ∈ S, and therefore ({s}, V \{s})

is a minimum cut with capacity c0({s}, V \{s}) = 0. Since λs is the smallest
breakpoint of κ(λ), then κ(λ) = cλ({s}, V \ {s}) on [0, λs], and κ(λ) <
cλ({s}, V \ {s}) on (λs,∞). Let λ be a parameter value such that λ > λs
and that there exists a flow f such that uf (s′)/w(s′) = λ and therefore
uf (s′) = w(s′)λ = cλ(s′) for all s′ ∈ S. By the maximum-flow minimum-cut
theorem, the maximum flow value and the minimum cut capacity both equal

κ(λ) =
∑
s′∈S

cλ
(
s′
)

=
∑
s′∈S

w
(
s′
)
λ = λ

∑
s′∈S

w
(
s′
)

= cλ({s}, V \ {s}).

Since λs is the maximum parameter value λ such that κ(λ) = cλ({s}, V \{s}),
then any maximum flow for λs solves the perfect sharing problem.

Moreover, since the capacities of the incoming edges into t are constant
in our parametric formulation for the aforementioned flow sharing problems,
then we can prove the following lemma which gives a tighter bound on the
number of breakpoints in κ(λ) than Lemma 2.15 using the same argument.

Lemma 2.17. In the parametric network defined above with k frontier ver-
tices, the minimum-cut capacity function κ(λ) is a piecewise-linear concave
function with at most k breakpoints, each per frontier vertex s′.

As a digression, we briefly discuss two problems that can be reduced to
the perfect sharing problem. The first problem is the aforementioned trans-
mission scheduling problem, which was first introduced by Itai and Rodeh
[16] and for which Algorithm 2.9 was initially designed by Gusfield [15]. In
the simplified formulation given in [15], the transmission scheduling problem
is defined by the following. Let G = (V,E) be a directed garph with edge
capacities c : E → R+, which denotes the transmission rate of each edge
(in bits per second). Let t ∈ V be the sink and S ⊆ V \ {t} the set of
sources. Let w : S → R+ denote the number of bits that each source would
like to send to the sink. The goal of the transmission scheduling problem is
to find a minimum number T such that the demands of all sources can be
completed within T seconds.

We shall show a reduction from the transmission reduction problem to
the perfect sharing problem. We add a super-source s and an edge (s, s′)
from s to each source s′. Let f be a flow with uf (s′)/w(s′) equal for all
s′ ∈ S. Let λ be such that λ = uf (s′)/w(s′) for all s′ ∈ S. Let T = 1

λ . Then
the value of f is given by∑

s′∈V
uf
(
s′
)

=
∑
s′∈V

w
(
s′
)
λ = λ

∑
s′∈V

w
(
s′
)

=
1

T

∑
s′∈V

w
(
s′
)
.

22

2.5. The Perfect Sharing Problem

This implies that the minimum value of T equals the maximum value of a
flow f with uf (s′)/w(s′) equal for all s′ ∈ S. Therefore, the perfect sharing
problem solves the transmission scheduling problem. We note that solving
the transmission scheduling problem using the perfect sharing problem takes
O(mn log n2

m) time, which improves the two algorithms of Itai and Rodeh
[16] with running times of O(kmn2) and O(kmn log n), respectively, where
k is the number of sources.

The other problem reducible to the perfect sharing problem that we shall
discuss is the problem of the strength of a directed network introduced by
Cunningham [4]. This problem is formulated as follows. Let G = (V,E) be
a directed graph with a source s ∈ V . Let c : E → R+ be the edge weights,
which denote the cost to delete each edge e. Let d : V \ {s} → R+ be the
vertex weights, which denote the value of each vertex if it is reachable from
s. Note that deleting a subset A of edges with total cost f(A) =

∑
e∈A c(e)

may disconnect a subset VA ⊆ V \ {s} of vertex from s, and hence induce a
total loss of g(A) =

∑
v∈VA d(v). The strength of G is then defined to be

λ∗ = min

{
f(A)

g(A)
: A ⊆ E, g(A) > 0

}
.

Gallo et al. [12] discuss several approaches for computing the strength
of a network, one of which is to reduce this problem to the perfect sharing
problem (in the one-source multiple-sink version). To see this reduction,
we note that λ∗ ≤ λ if and only if min{f(A) − λg(A) : A ⊆ E} ≥ 0.
The latter optimization problem is called an attack problem in [4]. It is
straightforward that the strength problem can be converted to a sequence
of attack problems by binary search in the case of integral values. Indeed,
Cunningham [4] gives an algorithm that computes the strength problem by
solving at most n attack problems. The key observation of Cunningham [4]
that is essential for this reduction is the following lemma:

Lemma 2.18. f(A) − λg(A) over A ⊆ E attains the minimum value at
δ−G(B) for some minimum cut (B,B) with B ⊆ V \ {s}.

For a cut (B,B) with B ⊆ V \{s}, we note that B is the set of vertices not
reachable from s. Therefore, given λ > 0, the attack problem min{f(A) −
λg(A) : A ⊆ E} can be converted to the following optimization problem:

min
{
f
(
δ−G(B)

)
− λd(B) : B ⊆ V \ {s}

}
.

This optimization problem can be computed by solving the perfect sharing
problem formulated in the following. We add a sink t and an edge (v, t) for

23

2.6. Finding a Minimum Congestion Flow

each v ∈ V \ {s}. Let f be a flow whose value is maximized amongst flows
with uf (v)/d(v) equal for all v ∈ V \{s}. Let λ be such that λ = uf (v)/d(v)
for all v ∈ V \ {s}. We set the capacity of (v, t) to be d(v)λ for each
v ∈ V \ {s}. For each cut (V \ (B ∪ {t}), B ∪ {t}) with B ⊆ V \ {s},

c(V \ (B ∪ {t}), B ∪ {t}) = f
(
δ−G(B)

)
+ λd(V \ (B ∪ {s}))

=
(
f
(
δ−G(B)

)
− λd(B)

)
+ λd(V \ {s}).

Therefore, any minimum cut (V \(B∪{t}), B∪{t}) with B ⊆ V \{s} implies
that B minimizes f(δ−G(B)) − λd(B). This completes the reduction of the
strength problem to the perfect sharing problem.

2.6 Finding a Minimum Congestion Flow

Equipped with necessary ingredients, namely the parametric push-relabel
algorithm from Section 2.3 and the perfect sharing problem from Section
2.5, we are now at a position to compute a fractional flow with minimum
congestion by a reduction to the perfect sharing problem.

Let G = (V,E) be a directed graph with vertex demands d : V → R+

and the set S of sinks. We construct an auxiliary directed graph G′ =
(V + ∪ V −, E′) by the following procedure. For each vertex v ∈ V , we add
two copies v+, v− to V + and V −, respectively, and an edge (v−, v+) to E′.
For each edge (v, w) ∈ E, we add an edge (v+, w−) to E′. In addition, we
add a super-source s, a super-sink t, an edge (s, v−) for each vertex v ∈ V
with d(v) > 0, and an edge (v+, t) for each sink v ∈ S. We set the weight
w(v−) = d(v) for each vertex v ∈ V with d(v) > 0. Finally, we define edge
capacities c : E → R+. We set c(s, v−) = ∞ for each v ∈ V with d(v) > 0,
and c(e) = 1 for each e ∈ E′ \ {(s, v−) : v ∈ V, d(v) > 0}.

We show that the minimum vertex congestion problem on G is equivalent
to the perfect sharing problem on G′. Let f ′ : E′ → R+ be a flow on G′

whose value is maximized amongst flows with uf ′(v
−)/w(v−) equal for all

v ∈ V with d(v) > 0. Let λ be such that λ = uf ′(v
−)/w(v−) for all v ∈ V

with d(v) > 0. Then the value of f ′ is given by∑
v∈V
d(v)>0

uf ′
(
v−
)

=
∑
v∈V
d(v)>0

w
(
v−
)
λ =

∑
v∈V
d(v)>0

d(v)λ = λ
∑
v∈V
d(v)>0

d(v).

Let f : E → R+ be defined by f(v, w) = 1
λf
′(v+, w−) for each edge

(v, w) ∈ E. Note that f satisfies the conservation constraints on G by

24

2.6. Finding a Minimum Congestion Flow

the construction of the auxiliary directed graph G′. For each vertex v ∈ V
with d(v) = 0, the congestion of v is given by

f
(
δ−G(v)

)
=

∑
(u,v)∈δ−G(v)

f(u, v) =
∑

(u,v)∈δ−G(v)

f ′ (u+, v−)

λ
=

1

λ

∑
e∈δ−

G′ (v
−)

f ′(e)

=
f ′ (v−, v+)

λ
≤ c (v−, v+)

λ
=

1

λ
.

Moreover, for each vertex v ∈ V with d(v) > 0, d(v) = w (v−) = 1
λuf ′(v

−) =
1
λf
′(s, v−), and hence the congestion of v is given by

f
(
δ−G(v)

)
+ d(v) =

∑
(u,v)∈δ−G(v)

f(u, v) +
f ′ (s, v−)

λ

=
∑

(u,v)∈δ−G(v)

f ′ (u+, v−)

λ
+
f ′ (s, v−)

λ
=

1

λ

∑
e∈δ−

G′ (v
−)

f ′(e)

=
f ′ (v−, v+)

λ
≤ c (v−, v+)

λ
=

1

λ
.

The maximality of f implies that 1
λ is minimized. Hence, 1

λ is the minimum
vertex congestion of G. This proves the reduction from the minimum vertex
congestion problem to the perfect sharing problem.

25

Chapter 3

Confluent Flows

I pick up my life
And take it away
On a one-way ticket–
Gone up North,
Gone out West,
Gone!

— Langston Hughes, One-Way Ticket

The simplicity of the confluent network flow model and its arborescence-
shaped support graph gained its universality in real-world applications. One
of the major applications of confluent flows is IP routing on the Internet
because IP routing often selects a shortest path tree for each destination,
as discussed in Chapter 1. Other applications are mentioned in [3]. For
instance, another scenario of the confluent network flow model is emergency
evacuation in a hotel, where fleeing people “meet and merge” by following
emergency exit signs, forming a tree of their evacuation routes. Moreover,
servers in content delivery networks (CDNs) are usually connected in the
shape of a rooted tree (rooted at the network operations centre) so that
data are transmitted between parents and their children, and vice versa.
Lastly, the increasing popularity of wireless networks over the past several
decades gives rise to new applications of the confluent flow model. An ad
hoc network is a decentralized wireless network in which each vertex in
the network participates in routing, which therefore does not depend upon
pre-existing network infrastructures such as routers. Ad hoc networks are
also usually organized as a rooted tree (rooted at the wired access point
connected to the Internet) so that each access point in the ad hoc network
transmits data with its parent to connect to the Internet.

Several works study the impact of confluent networks on the congestion
of a netowk heuristically and practically in the setting of IP routing; see,
for instance, [20] and [29]. However, these two works does not go beyond
the trivial approximation ratio of O(n). In this paper, we summarize the
approximation algorithms in [2] to give theoretical upper bounds for several

26

3.1. Congestion Minimization

optimization problems on confluent flows, including the congestion mini-
mization problem and the demand maximization problem. Moreover, we
give an instance which admits a fractional flow with congestion at most 1,
yet no confluent flow with congestion smaller than Hk, the kth harmonic
number, where k is the number of sinks. This example shows that the
minimum congestion is inevitably unbounded for a confluent flow.

Recall that a flow is confluent if each vertex can send flow to at most
one outgoing edge. Throughout this chapter, we consider uniform vertex
capacities (i.e., c(e) = 1 for each e ∈ E) and assume that there exist k sinks
t1, . . . , tk. The algorithm in Section 2.6 produces a fractional flow satisfying
all demands and capacity constraints at all vertices. Hence, by scaling all
demands and flows by the congestion value, we can assume without loss
of generality that there exists an optimal fractional flow with congestion 1.
Moreover, we assume that the support network of the optimal fractional flow
is acyclic by repeatedly applying the operation of directed cycle cancellation,
defined in Procedure 3.1, which subtracts ε flow on each edge along C with
ε chosen to be the minimum flow on an edge along C whenever there exists
a directed cycle C in the support network.

1 ε← min{f(e) : e ∈ E(C)}
2 f(e)← f(e)− ε for all e ∈ E(C)

Procedure 3.1: EliminateCycle(C, f).

3.1 Congestion Minimization

In this section, we present a (1 + lg k)-approximation algorithm, due to
Chen et al. [2], for the congestion minimization problem on confluent flows,
where the logarithm has base 2. We shall see, after the expositions in this
chapter, that a repeatedly emerging pattern in approximation algorithms
for confluent flows is a combination of three operations on a flow and its
support graph, which we introduce below.

Recall that a vertex is a frontier vertex if it is adjacent to a sink. The
first operation is then to aggregate a frontier vertex v with all of its outgoing
edges to the same sink ti. Such a frontier vertex is called a decided vertex.
Specifically, the operation marks one of the outgoing edges, contract v into
ti, and add d(v) to d(ti). We define this operation in Procedure 3.2.

The operation of vertex aggregation can be interpreted from two points
of view. On one hand, we can view this operation in the shrunken graph

27

3.1. Congestion Minimization

as described above, and the graph gets smaller after performing a vertex
aggregation operation. On the other hand, it is sometimes more convenient
to visualize this operation on the original graph. A straightforward inductive
proof shows that a sink in the shrunken graph always corresponds to an in-
arborescence rooted at the corresponding sink in the original graph, and
that each vertex aggregation operation grows the in-arborescence from one
of its leaves. Since each vertex can be aggregated into at most one sink, then
the sinks in the shrunken graph correspond to vertex-disjoint sink trees in
the original graph. We call such an in-arborescence rooted at a sink in the
original graph a sink tree. The discussion in this paragraph is summarized
in the following lemma.

Lemma 3.1. The sinks in the shrunken graph correspond to vertex-disjoint
sink trees in the original graph formed by the marked edges.

1 mark one of the outgoing edges of v
2 d(ti)← d(ti) + d(v)
3 foreach edge e to v do
4 set the head of e to ti

Procedure 3.2: Aggregate(v, ti), where v is a decided vertex with
all outgoing edges to the same sink ti.

A sawtooth cycle is a collection

C = {(u0, v0) , P0, (u1, v1) , P1, . . . , (ur−1, vr−1) , Pr−1} , (3.1)

where (ui, vi) is an edge, ui is a sink, and Pi is a ui+1-vi directed path in the
support graph of f , with subscripts modulo r. In other words, a sawtooth
cycle is a cycle of length at least 3 in an auxiliary graph Ĝ obtained from G
by adding a reverse edge for each edge from a frontier vertex to a sink. An
example of a sawtooth cycle is given in Figure 3.1. In Chapter 4, we shall see
that removing the restriction that only edges from a frontier vertex to a sink
can be reversed gives the definition of a general sawtooth cycle, which admits
a nice characterization in terms of the acyclic digon-tree representation. In
this chapter, however, the restricted definition of sawtooth cycles suffices.

The second operation, defined in Procedure 3.3, eliminates a sawtooth
cycle in the support network of a flow by adding ε flow to each edge (ui, vi)
and subtracting ε flow along directed paths Pi, where ε is chosen appropri-
ately so that at least one edge along the sawtooth cycle vanishes.

28

3.1. Congestion Minimization

Figure 3.1: An example of a sawtooth cycle, where the red edges denote
the reverse edges of edges from frontier vertices to sinks, and square vertices
denote sinks.

1 ε← min{f(e) : e ∈ E(Pi), i = 0, . . . , r − 1}
2 f(ui, vi)← f(ui, vi) + ε for all i = 0, . . . , r − 1
3 f(e)← f(e)− ε for all e ∈ E(Pi) and i = 0, . . . , r − 1

Procedure 3.3: EliminateSawtooth(C, f), where C is a sawtooth
cycle as defined in (3.1).

The third operation, sink deactivation, is concerned with flow redirection
between two outgoing edges at a frontier vertex. We say that a sink is a
remote sink if it has only one in-neighbour, which has at least one other
sink out-neighbour. We give an example of this structure in Figure 3.2. We
denote by f(v) the congestion at a vertex v for some flow f on G. In [2],
sink deactivation is defined as in Procedure 3.4.

The three operations introduced above can be applied repeatedly until
only the sinks remain in the shrunken graph. This is summarized in the
following lemma.

Lemma 3.2. If there is neither a decided vertex nor a sawtooth cycle, then
there is a remote sink, which can be found by a polynomial time algorithm.

v

sj

u

s`

Figure 3.2: An example of a remote sink sj with its only in-neighbour v,
which has at least one other sink out-neighbour s`.

29

3.1. Congestion Minimization

1 if f(tj) + f(v, t`) < f(t`)− f(v, t`) then
2 redirect flow on (v, t`) to (v, tj)
3 remove edge (v, t`)

4 else
5 redirect flow no (v, tj) to (v, t`)
6 remove edge (v, t`)
7 deactivate tj

Procedure 3.4: DeactivateSink(v, tj , t`), where tj is a remote sink
whose only in-neighbour is v that has another sink out-neighbour t`.

Proof. Let Ĝ be an auxiliary graph obtained from G by adding a reverse edge
for each edge from a frontier vertex to a sink. We give such a polynomial
time algorithm in Algorithm 3.5.

1 walk along the edges of Ĝ, obeying the following three rules:
2 (a) when possible, an edge (u, v) is not followed by its reverse edge
3 (b) when possible subject to (a), void visiting sinks
4 (c) stop after visiting a vertex twice
5 v ← the vertex visited twice
6 (w, v)← the last visited edge
7 return w

Algorithm 3.5: A polynomial time algorithm to find a remote sink,
provided that there exist neither decided vertices nor sawtooth cycles
in the support network of f .

It is straightforward to see that the running time of Algorithm 3.5 is
O(n) since each step in the walk visits at least one vertex and since the walk
stops immediately after it visits a vertex twice.

Let v, w be the vertices as in Algorithm 3.5. We show that w is a remote
sink whose only in-neighbour is v. By construction, each vertex of Ĝ has
at least one outgoing edge. Hence, the walk would continue indefinitely
without (c). Since there does not exist a sawtooth cycle in G, then there
does not exist a cycle of length at least 3 in Ĝ. This implies that the last
two visited edges in the walk are (v, w) and (w, v). Note that at least one
of v and w is a sink because otherwise (v, w) and (w, v) would form a cycle,
which contradicts the acyclicity of G. Moreover, note that v is not a sink
because otherwise w would be a frontier vertex all of whose outgoing edges

30

3.1. Congestion Minimization

go to v due to (a), which would therefore satisfy the condition of a vertex
aggregation operation. Therefore, w is a sink, and (a) implies that v is a
frontier vertex all of whose outgoing edges go to w. Lastly, note that v must
have one other sink out-neighbour because otherwise one of the following
two cases would happen:

• all of the outgoing edges of v go to w, which satisfies the condition of
a vertex aggregation operation;

• it has an edge to another non-sink vertex, which would have been
visited instead of (v, w) due to (b).

This proves that w is a remote sink whose only in-neighbour is v.

The (1+ lg k)-approximation algorithm of Chen et al. [2] simply consists
of a main loop which executes the three aforementioned operations when-
ever possible, until only the sinks remain in the shrunken graph. We give
this algorithm in Algorithm 3.6, where f is a fractional flow on G with the
congestion at any vertex at most 1. It is straightforward to see that each
vertex aggregation removes a vertex, and that each sawtooth cycle elimina-
tion or sink deactivation removes an edge. Therefore, repeatedly applying
the three aforementioned operations takes finite steps. Moreover, we note
that vertex aggregation does not change the congestion at any vertex, that
sawtooth cycle elimination does not increase the congestion at any vertex,
and that sawtooth cycle elimination does not change the congestion at any
sink.

1 while V (G) 6= S do
2 do one of the following three operations whenever possible:
3 (a) Aggregate(v, ti) for some frontier vertex v
4 (b) EliminateSawtooth(C, f) for some sawtooth cycle C
5 (c) DeactivateSink(v, tj , t`) for some remote sink tj

Algorithm 3.6: A (1+lg k)-approximation algorithm for congestion
minimization on confluent flows.

Lemma 3.3. Each vertex aggregation operat does not change the congestion
of any vertex.

Lemma 3.4. Each elimination of a sawtooth cycle does not increase the
congestion of any vertex, and does not change the congestion of any sink in
the shrunken graph.

31

3.1. Congestion Minimization

It then remains to show that sink deactivation increases the congestion
of the sink to which flow is redirected by at most lg k. This analysis uses
a potential function argument. Given a flow f and a sink ti, we define the
potential at ti to be φ(ti) = 2f(ti), and the potential of the flow f to be
the sum of the potentials at the active sinks. We note that this potential
function φ(·) is convex. The following lemma shows that sink deactivation
does not increase the congestion of the current flow.

Lemma 3.5. Sink deactivation does not increase the potential of the flow.
In particular, the potential of the deactivated sink, if any, is no more than
the potential of the flow before the sink deactivation.

Proof. We denote by f ′ the new flow after the redirection, and by φ′ the
new potential after the redirection. If f(tj) +f(v, t`) < f(t`)−f(v, t`), then
we redirect flow from (v, t`) to (v, tj) and remove (v, t`). Since we increase
and decrease the congestions at tj and t` by the same amount, then there
exists λ ∈ (0, 1) such that

f ′ (tj) = λf (tj) + (1− λ)f (t`) ,

f ′ (t`) = (1− λ)f (tj) + λf (t`) .

By the convexity of 2(·), we have that

φ′ (tj) = 2f
′(tj) ≤ λ2f(tj) + (1− λ)2f(t`) = λφ (tj) + (1− λ)φ (t`) , (3.2)

φ′ (t`) = 2f
′(tj) ≤ (1− λ)2f(tj) + λ2f(t`) = (1− λ)φ (tj) + λφ (t`) . (3.3)

Adding (3.2) and (3.3) gives that

φ′ (tj) + φ′ (t`) ≤ φ (tj) + φ (t`) .

In other words, sink deactivation does not increase the potential of the flow
if f(tj) + f(v, t`) < f(t`)− f(v, t`).

On the other hand, if f(tj) + f(v, t`) ≥ f(t`) − f(v, t`), i.e., f(tj) ≥
f(t`)− 2f(v, t`), then we redirect flow from (v, tj) to (v, t`), remove (v, tj),
and deactivate tj . The increase in the potential of the flow is given by

φ′ (t`)− φ (tj)− φ (t`) = 2f
′(t`) − 2f(tj) − 2f(t`)

= 2f(t`)+f(v,tj) − 2f(tj) − 2f(t`)

≤ 2f(t`)+f(v,tj) − 2f(t`)−2f(v,t`) − 2f(t`).

32

3.1. Congestion Minimization

Since f(t`) − f(v, t`) = 1
2(f(t`) − 2f(v, t`)) + 1

2f(t`), then the convexity of

2(·) implies that

2f(t`)−2f(v,t`) ≤ 1

2
· 2f(t`)−2f(v,t`) +

1

2
· 2f(t`).

Therefore, we have that

2f(t`)−2f(v,t`) + 2f(t`) ≥ 2 · 2f(t`)−2f(v,t`) = 2f(t`)−2f(v,t`)+1.

Since the congestion of f is 1, then f(v) ≤ 1. Hence, we have that

(f (t`) + f (v, tj))− (f (t`)− f (v, t`) + 1) = f (v, tj) + f (v, t`)− 1

≤ f(v)− 1 ≤ 1− 1 = 0.

This implies that f(t`) + f(v, tj) ≤ f(t`) − f(v, t`) + 1 and therefore that
2f(t`)+f(v,tj) ≤ 2f(t`)−f(v,t`)+1. This eventually gives that the increase in the
potential of the flow is at most

2f(t`)+f(v,tj) − 2f(t`)−2f(v,t`) − 2f(t`) ≤ 2f(t`)+f(v,tj) − 2f(t`)−2f(v,t`)+1 ≤ 0.

This proves that sink deactivation does not increase the potential of the
flow. Moreover, the second assertion in the lemma is straightforward.

The lemmas stated and proved in this section lead to the next theorem
concerning the correctness of Algorithm 3.6.

Theorem 3.6. Given a fractional flow satisfying all demands with vertex
congestion 1, Algorithm 3.6 finds a confluent flow that satisfies all demands
and has congestion at most 1 + lg k.

Proof. By Lemma 3.1, the sinks in the shrunken graph correspond to vertex-
disjoint sink trees in the original graph formed by the marked edges. Hence,
if the vertex set of the shrunken graph contains the sinks only, then the
marked edges form a confluent flow.

Since the congestion at each sink is at most 1 in the initial fractional flow,
then the potential of the initial flow is at most

∑k
i=1 φ(ti) = k · 21 = 2k.

Lemma 3.3, Lemma 3.4 and Lemma 3.5 show that the potential of the flow
does not increase throughout the algorithm, and that the potential of any
deactivated sink is at most 2k. Therefore, the potential of any sink is at most
2k upon the termination of the algorithm. It follows that the congestion of
any sink with respect to the final confluent flow is at most lg 2k = 1+lg k.

33

3.2. Demand Maximization

To conclude this section, we note that Chen et al. [2] slightly improves
the approximation ratio of Algorithm 3.6 to 1 + ln k, where the logarithm
uses the natural base. Specifically, this improved (1 + ln k)-approximation
algorithm generalizes sink deactivation to parsimonious sink deactivation,
which performs flow redirection in an induced subgraph G1 of G with the
following properties:

• Every edge in G1 connects a frontier to a sink.

• G1 contains all of the outgoing edges of its frontier edges and all of
the incoming edges of its sinks.

• Every frontier vertex of G1 is adjacent to at least two sinks.

Moreover, the improves algorithm uses convex minimization to perform the
balancing operation, which redistributes flow from the frontier vertices in G1

to the sinks in G1. The details of this improved algorithm is more involved
than those of Algorithm 3.6, so we refer the reader to their original paper
for detailed expositions.

3.2 Demand Maximization

The three operations in the last section—vertex aggregation, sawtooth cycle
elimination and sink deactivation—are of great importance to optimization
problems on confluent flows. In this section, we present a slight variant of
Algorithm 3.6, which gives a constant-ratio approximation algorithm for the
demand maximization problem on confluent flows. Recall that the demand
maximization problem asks for a subset of the sources whose demands can
be routed by a feasible flow and which maximizes the routed demands.

In Algorithm 3.6, we assume that there exists a fractional flow which
satisfies all demands with congestion 1, which can be produced by the
congestion-minimizing algorithm in Section 2.6. This assumption gives rise
to a 3-approximation algorithm for the demand maximization problem for
confluent flows. However, if we only want a constant-ratio approximation
for demand maximization, then we can relax this assumption by allowing
any fractional flow with congestion 1 which satisfies a constant fraction of
the maximum satisfiable demands. Thus, any constant-ratio approximation
algorithm for the demand maximization problem on single-sink unsplittable
flows can be used to give such an initial flow. For instance, Kolliopoulos and
Stein [19] gives a 1.33-approximation algorithm for demand maximization
on single-sink unsplittable flows, and this approximation ratio is improved

34

3.2. Demand Maximization

to 4.43 by Dinitz et al. [6], which is the best known approximation ratio.
Given a 4.43-approximation single-sink unsplittable flow as the initial flow,
we can obtain a 13.29-approximation algorithm for demand maximization
on confluent flows.

We assume that there exists a fractional flow that satisfies D demands
with congestion 1. The only differences of the 3-approximation algorithm
for demand maximization from Algorithm 3.6 are a modified version of sink
deactivation and a post-processing procedure. More generally, as in [22],
we introduce an extra parameter κ to sink deactivation, giving Procedure
3.7. Note that sink deactivation is called pivoting in [22]. For instance, the
3-approximation algorithm for demand maximization uses κ = 1

2 , and the
clustering algorithm of Seguin-Charbonneau and Shepherd [22] uses κ ≥ 1.
Moreover, it is conjectured by Seguin-Charbonneau and Shepherd [22] that
κ = −1 may be promising for the open question of routing all demands in
a constant number of confluent rounds, in which case f(tj)− f(v, tj) > −1
and hence the deactivation branch is always executed.

1 if f(tj)− f(v, tj) ≤ κ then
2 redirect flow on (v, t`) to (v, tj)
3 remove edge (v, t`)

4 else
5 redirect flow no (v, tj) to (v, t`)
6 remove edge (v, t`)
7 deactivate tj

Procedure 3.7: DeactivateSinkκ(v, tj , t`), where tj is a remote
sink whose only in-neighbour is v which has another sink out-
neighbour t`.

As discussed in [22], this parametrized version of sink deactivation is
based upon the intuition that if the congestion at a sink is “small”, then it
is not deactivated; if the congestion exceeds κ + 1, then it is deactivated,
and its flow is redirected to some other sink. Therefore, a sink is either
deactivated or has small congestion at most κ+ 1.

The second modification of the 3-approximation algorithm for demand
maximization is a post-processing procedure that selects which demands to
satisfy for each of the sink trees after obtaining the confluent flow. Let
T1, . . . , Tk be the sink trees corresponding to t1, . . . , tk, respectively. Let b̂i
be the total demand in Ti for each i ∈ [k]. For each sink tree Ti, we proceed
as follows based upon the total demand b̂i in Ti:

35

3.2. Demand Maximization

Case 1. If b̂i ≤ 1, then routing all demands in Ti does not make the
congestion exceed 1. Therefore, the total demand routed in Ti is b̂i.

Case 2. If 1 < b̂i ≤ 3
2 , then we greedily partition the demands into

groups such that each group has total demand at most 2
3 b̂i, and then route

the demands in the group with the maximum total demands. This greedy
partition procedure is given in Procedure 3.8. We denote d(U) =

∑
u∈U d(u).

1 U ← ∅
2 while not all vertices v in Ti with d(v) > 0 have been marked do
3 U ← ∅
4 while ∃ unmarked v ∈ V (Ti) with d(v) > 0, d(U ∪ {v}) ≤ 2

3 b̂i do
5 U ← U ∪ {v}
6 mark v

7 U ← U ∪ {U}
8 return U ∈ U such that

∑
u∈U d(u) is maximized

Procedure 3.8: GreedyPartition(Ti).

Procedure 3.8 selects a subset of the demands in Ti whose total amount
is at least 1

2 b̂i, while the congestion of Ti does not exceed 1.

Lemma 3.7. Procedure 3.8 applied to a sink tree Ti with 1 < b̂i ≤ 3
2 returns

a subset U of the demands in Ti with 1
2 b̂i ≤ d(U) ≤ 1.

Proof. Suppose that the groups in the paritition U have demands d1, . . . , dr
with d1 ≤ . . . ≤ dr, respectively. First, we observe that dj ≥ 1

3 b̂i for all j ≥ 2;

otherwise, we would have that d1 ≤ d2 < 1
3 b̂i and hence that d1+d2 <

2
3 b̂i, so

the groups corresponding to d1 and d2 would have been combined. Similarly,
d1 + dr >

2
3 b̂i; otherwise, we would have that d1 + dr ≤ 2

3 b̂i, so the groups
corresponding to d1 and d2 would have been combined. This implies that
r = 2 because otherwise we would have that d1 + d2 + dr >

2
3 b̂i + 1

3 b̂i = b̂i,

a contradiction. Thus, d1 + dr = b̂i and d1 ≤ dr. This shows that dr ≥ 1
2 b̂i.

Moreover, dr ≤ 2
3 b̂i ≤

2
3 ·

3
2 ≤ 1.

Case 3. If b̂i >
3
2 , then we use another greedy procedure to select a

subset of the demands in Ti whose total amount is at least 1
2 . We give this

procedure in Procedure 3.9.
It is straightforward to see that Procedure 3.9 selects a subset of the

demands in Ti whose total amount is at least 1
2 , and routing which does not

make the congestion exceed 1.

36

3.2. Demand Maximization

1 U ← ∅
2 foreach vertex v ∈ V (Ti) with d(v) > 0 do
3 if d(v) < 1

2 then
4 U ← U ∪ {v}
5 if d(U) ≥ 1

2 then
6 return U

7 else
8 return {v}

Procedure 3.9: GreedySelect(Ti).

Lemma 3.8. Procedure 3.9 applied to a sink tree Ti with b̂i >
3
2 returns a

subset U of the demands in Ti with 1
2 ≤ d(U) ≤ 1.

Proof. If there exists v ∈ V (Ti) with d(v) ≥ 1
2 , then {v} is returned when

the loop visits v, and d({v}) ≥ 1
2 . Otherwise, d(v) < 1

2 for all v ∈ V (Ti).

Since b̂i >
3
2 , then there exists a subset of the demands in Ti with total

demand at least 1
2 . Moreover, if d(U) > 1, then removing any vertex v from

U would give that d(U \ {v}) > 1 − 1
2 = 1

2 , so the last vertex added to U
would not have been added, a contradiction. Therefore, 1

2 ≤ d(U) ≤ 1.

1 for i← 1, . . . , k do

2 if b̂i ≤ 1 then
3 route all of the demands in Ti

4 else if b̂i ≤ 3
2 then

5 U ← GreedyPartition(Ti)
6 route all of the demands in U

7 else
8 U ← GreedySelect(Ti)
9 route all of the demands in U

Procedure 3.10: PostProcess(T1, . . . , Tk).

The entire post-processing procedure is given in Procedure 3.10, and the
3-approximation algorithm for demand maximization on confluent flows is
given in Algorithm 3.11. By Lemma 3.7 and Lemma 3.8 with the trivial first
case, selecting demands to route in each sink tree according to the above

37

3.2. Demand Maximization

1 while V (G) 6= S do
2 do one of the following three operations whenever possible:
3 (a) Aggregate(v, ti) for some frontier vertex v
4 (b) EliminateSawtooth(C, f) for some sawtooth cycle C
5 (c) DeactivateSink1/2(v, tj , t`) for some remote sink tj
6 T1, . . . , Tk ← sink trees corresponding to t1, . . . , tk, respectively
7 PostProcess(T1, . . . , Tk)

Algorithm 3.11: A 3-approximation algorithm for demand maxi-
mization on confluent flows.

three cases gives the congestion at most 1 and a total demand of at least∑
i∈[k]
b̂i≤1

b̂i +
1

2

∑
i∈[k]

1≤b̂i≤ 3
2

b̂i +
∑
i∈[k]
b̂i>

3
2

1

2
(3.4)

It then remains to show that (3.4) achieves an approximation ratio of 3 for
demand maximization, i.e., that the value of (3.4) is at least D

3 . Chen et al.
[2] prove this using a “pictorial” approach by plotting the congestions of the
sinks as a histogram.

Lemma 3.9. Let b̂i be the total demand (i.e., the congestion) of Ti for each
i ∈ [k]. Then we have that∑

i∈[k]
b̂i≤1

b̂i +
1

2

∑
i∈[k]

1<b̂i≤ 3
2

b̂i +
∑
i∈[k]
b̂i>

3
2

1

2
≥ D

3
. (3.5)

Proof. First, we show that

2
∑
i∈[k]

1
2
<b̂i≤1

b̂i +
1

2

∑
i∈[k]

1<b̂i≤ 3
2

b̂i ≥
∑
i∈[k]
b̂i>

3
2

(
b̂i −

3

2

)
. (3.6)

We plot as a histogram the congestion f(ti) at each sink ti in the shrunken
graph. The conservation of flow implies that the total area of the histogram
is always D. Lemma 3.3 and Lemma 3.4 imply that vertex aggregation and
sawtooth cycle elimination do not change the congestion at any sink. Hence,
the histogram only changes during sink deactivation.

38

3.2. Demand Maximization

y = 3
2

tj

f(tj)− f(v, tj)

f(v, tj)

Figure 3.3: An illustration of the histogram of the congestion at a sink. The
area of the shaded region gives an upper bound of the increase of A.

We divide the histogram into two parts by the horizontal line y = 3
2 . Let

A be the total area of the upper part. Note that flow redirection in sink
deactivation corresponds to moving of area in the histogram. We have the
following two cases:

Case 1. If f(tj)− f(v, tj) ≤ 1
2 , then we have that

f (tj) + f (v, t`) ≤
1

2
+ f (v, tj) + f (v, t`) ≤

1

2
+ f(v) ≤ 1

2
+ 1 =

3

2
.

Hence, A does not increase.
Case 2. If f(tj) − f(v, tj) >

1
2 , then tj is deactivated according to

DeactivateSink1/2(v, tj , t`), implying that b̂j = f(tj)−f(v, tj). Pictorially,
the increase of A is at most the area of f(v, tj) below the horizontal line
y = 3

2 in Figure 3.3. Therefore, we have the following sub-cases: Case 2(a).
If 1

2 < f(tj)− f(v, tj) ≤ 1, then the increase of A is at most

3

2
− (f (tj)− f (v, tj)) <

3

2
− 1

2
= 2 · 1

2
< 2 (f (tj)− f (v, tj)) = 2b̂j .

Case 2(b). If 1 < f(tj)− f(v, tj) ≤ 3
2 , then the increase of A is at most

3

2
− (f (tj)− f (v, tj)) <

3

2
− 1 =

1

2
<

1

2
(f (tj)− f (v, tj)) =

1

2
b̂j .

Case 2(c). If f(tj)− f(v, tj) >
3
2 , then A does not increase.

On the other hand, the total increase of A after the algorithm is given by
the area of the upper part of the histogram, i.e.,

∑
i:b̂i>3/2(b̂i−

3
2). Therefore,

39

3.3. An Hk Lower Bound

combining the two cases above yields (3.6). Therefore, we have that

2
∑
i∈[k]
b̂i≤1

b̂i +
1

2

∑
i∈[k]

1<b̂i≤ 3
2

b̂i ≥ 2
∑
i∈[k]

1
2
<b̂i≤1

b̂i +
1

2

∑
i∈[k]

1<b̂i≤ 3
2

b̂i ≥
∑
i∈[k]
b̂i>

3
2

(
b̂i −

3

2

)
. (3.7)

Since the total demand is D by definition, then we have that∑
i∈[k]
b̂i≤1

b̂i +
∑
i∈[k]

1<b̂i≤ 3
2

b̂i +
∑
i∈[k]
b̂i>

3
2

b̂i = D. (3.8)

Therefore, adding (3.7) and (3.8) and dividing both sides of the resulting
inequality by 3 yields (3.5).

Combining the lemmas stated and proved in this section gives the next
theorem which asserts the correctness of Algorithm 3.11.

Theorem 3.10. Given a fractional flow with vertex congestion 1 and total
demand D, Algorithm 3.11 finds a confluent flow with vertex congestion at
most 1 which satisfies a subset of demands with total amount at least D

3 .

3.3 An Hk Lower Bound

The simplicity of confluent flows is a mixed blessing. While confluent flows
have simple and omnipresent tree-shaped support network, they suffer from
an unbounded lower bound; in other words, Chen et al. [2] show an instance
of a graph G which admits a fractional flow with congestion 1, but which
does not admit a confluent flow with congestion less than Hk, where Hk is
the kth harmonic number. Since Hk = ln k + γ − o(1), where γ ≈ 0.577 is
Euler’s constant, then the upper bounds of 1 + lg k and of 1 + ln k presented
in Section 3.1 are almost tight within a multiplicative constant less than 2
and an additive constant less than 1, respectively.

We give such an instance in Figure 3.4. Let k ∈ N. Let G be a directed
graph with k(k+1)

2 sources of the form (i, j) with i, j ∈ [k] and i ≤ j, and k
sinks of the form ti for i ∈ [k]. Each (i, j) with i, j ∈ [k] and i ≤ j < k has
two outgoing edges to (i, j + 1) and to (i+ 1, j + 1), respectively. Moreover,
each (i, k) with i ∈ [k] has an outgoing edge to ti. The demand at each
source (i, j) is 1

j for i, j ∈ [k] and i ≤ j. Intuitively, this instance consists
of a triangle of vertices where each vertex not in the last row sends flow to
the two vertices immediately below it. We have the following two lemmas

40

3.3. An Hk Lower Bound

· · · · · · · · · · · ·

(i, j)

(i, j + 1) (i+ 1, j + 1)

· · · · · · · · · · · · · · · · · ·

· · · · · · · · ·

t1 t2 t3
· · · · · · · · ·

tk

1/1

1/2

1/3

1/j

1/k

j+1−i
j+1

i
j+1

Figure 3.4: An instance which admits a fractional flow that satisfies all
demands with vertex congestion 1, yet which does not admit a confluent
flow that satisfies all demands with vertex congestion less than Hk, the kth

harmonic number.

41

3.3. An Hk Lower Bound

regarding fractional flows and confluent flows, which give an Hk gap between
fractional flows and confluent flows.

Lemma 3.11. There exists a fractional flow on G that satisfies all demands
with vertex congestion 1.

Proof. For each source (i, j) with i, j ∈ [k] and i ≤ j, we send j+1−i
j+1 units of

flow from (i, j) to (i, j+ 1), and i
j+1 units of flow from (i, j) to (i+ 1, j+ 1).

Thus, the total outgoing flow from each source (i, j) with i, j ∈ [k] and i ≤ j
equals j+1−i

j+1 + i
j+1 = 1.

It suffices to prove by induction on j ∈ [k] that the congestion at each
source (i, j) is 1 for each i ∈ [j]. Since the demand at (1, 1) is 1 and (1, 1)
has no incoming edges, then the congestion at (1, 1) is 1, proving the base
case. Let j ∈ {2, . . . , k}. Suppose by induction that the congestion at (i, j)
is 1 for each i ∈ [j − 1]. Let i ∈ [j]. Note that (i, j) has incoming edges
from (i, j − 1) and (i − 1, j − 1) with j−i

j units of flow and i−1
j units of

flow, respectively. Note also that the demand at (i, j) is 1/j. Therefore, the
congestion at (i, j) is 1

j + j−i
j + i−1

j = 1, which equals its total outgoing flow.
This completes the induction step.

Lemma 3.12. Any confluent flow on G that satisfies all demands has vertex
congestion at least Hk.

Proof. Note that any confluent that satisfies all demands must satisfy the
demand at (1, 1). The confluence implies that the flow must be routed along
a path from (1, 1) to (i, k) for some i ∈ [k], passing through one vertex from
each “layer” j = 1, . . . , k with demands 1, 12 , . . . ,

1
k , respectively. Since all of

the demands along this path must be sent to the sink ti, then the congestion
at ti equals 1 + 1

2 + . . .+ 1
k = Hk.

42

Chapter 4

Bi-/d-furcated Flows

The earth expanding right hand and left hand,
The picture alive, every part in its best light,
The music falling in where it is wanted, and stopping where it is

not wanted,
The cheerful voice of the public road, the gay fresh sentiment of

the road.

— Walt Whitman, Song of the Open Road

As discussed in Chapter 1, one of the chief motivations for the confluent
network flow model is IP routing, whose strength derives from its low cost
and operational simplicity. The simplicity of IP routing is reflected in its
routing protocol described as follows. In particular, with an IP router is
associated a next hop table which includes an entry next(t) denoting the
single next hop for each possible IP address t. In other words, each possible
IP address has a single next hop from an IP router.

On the other hand, nevertheless, the simplicity of IP routing also entails
several burdens of the confluent network flow model. For instance, we have
shown in Chapter 3 that there exist instances in which confluent flows suffer
from an Ω(log k) congestion grow, and Chen et al. [2] also prove that it
is NP-hard to approximate the congestion of an optimal confluent flow to
within a factor of lg k

2 . This is an almost tight lower bound which matches its
(1 + ln k)-upper bound. Such an unbounded lower bound puts the confluent
network flow model in a less satisfactory position for practical applications.

A natural idea to possibly break this Ω(log k) lower bound of the con-
fluent flow model while preserving its simplicity to a large extent is to allow
an IP router to send outgoing requests to two next hops, or d next hops,
for each possible IP address. In their 2004 paper, Chen et al. [2] ask the
following question about such a variation:

Another variation is to allow the flow leaving a vertex to use a
constant number of outgoing edges, instead of one outgoing edge
in the confluent setting. For instance, one interesting question is

43

4.1. Edge Contractions and Sawtooth Cycles

the following: if the graph admits a splittable flow of congestion
1, can we always achieve congestion O(1) using a flow in which
every vertex uses only O(1) outgoing edges.

It is quite surprising that very little has been studied for bifurcated and
d-furcated flows. Therefore, we primarily study the congestion minimization
problem of such degree constraint relaxations of the confluent flow model in
this chapter. In particular, we focus on the paper of Donovan et al. [7] for its
(1 + 1

d−1)-congestion algorithm, and perhaps more interestingly, for a struc-
tural theorem which gives a characterization of sawtooth-cycle-free directed
graphs. We say that a flow is bifurcated if each vertex can send flow to at
most two outgoing edges, and more generally, that a flow is d-furcated if each
vertex can send flow to at most d outgoing edges. Moreover, in the conges-
tion minimization problem of d-furcated flows, we consider uniform vertex
capacities (i.e., c(e) = 1 for each e ∈ E) and assume that there is a single
sink t. By the algorithm given in Section 2.6, we assume that there exists a
fractional flow satisfying all demands and capacity constraints at all vertices.
It turns out, surprisingly, that even allowing one additional next hop (i.e.,
a bifurcated flow) drastically reduces the Θ(log k) congestion to a constant
congestion. In addition, we assume that the support network of the opti-
mal fractional flow is acyclic by repeatedly applying EliminateCycle(C, f)
defined in Procedure 3.1 whenever we find a directed cycle C.

4.1 Edge Contractions and Sawtooth Cycles

We introduce two operations used in the algorithm of Donovan et al. [7].
First, we contract edges so that each edge has out-degree either 0 or at
least 2. This operation is defined in Procedure 4.1. One can view the edge
contraction operation as shrinking the edge (v, w) and aggregating the two
vertices v and w. Therefore, in a shrunken graph, an edge may corresponding
to multiple edges in the original graph. It is straightforward to verify that
performing Contract(v) gives an equivalent instance. We note that edge
contractions can be regarded as a generalized version of vertex aggregation
operations in the approximation algorithms for confluent flows, in the sense
that vertex aggregations only aggregate a frontier vertex and a sink, whereas
edge contractions may happen between any vertex of out-degree 1 and its
only out-neighbour.

Lemma 4.1. The congestion at each vertex is not changed after performing
Contract(v).

44

4.1. Edge Contractions and Sawtooth Cycles

1 if v has out-degree 1 then
2 w ← only out-neighbour of v
3 d(v)← d(v) + d(w)
4 foreach edge e from w do
5 set the tail of e to be v

Procedure 4.1: Contract(v).

We have already seen that the notion of sawtooth cycles and the oper-
ation of breaking sawtooth cycles play an essential role in the (1 + ln k)-
congestion algorithm of Chen et al. [2]. Recall that a sawtooth cycle in [2]
is defined as a cycle in an auxiliary graph Ĝ obtained from G by adding a
reverse edge for each edge from a frontier vertex to a sink. In other words,
a sawtooth cycle in [2] may only have “reverse” edges from frontier vertices
to sinks. Donovan et al. [7] generalize this strict notion of sawtooth cycles
by defining a (general) sawtooth cycle to be a collection

C = {(u0, v0) , P0, (u1, v1) , P1, . . . , (ur−1, vr−1) , Pr−1} ,

where (ui, vi) is an edge and Pi is a ui+1-vi directed path in the support
graph of f for i ∈ {0, . . . , r−1}, with subscripts modulo r. We use “sawtooth
cycles” and “general sawtooth cycles” interchangeably in this chapter.

Sawtooth cycles are not wanted in the (1 + 1
d−1)-congestion d-furcated

flow algorithm of Donovan et al. [7]; indeed, in subsequent paragraphs we
present a graph-theoretic characterization of directed graphs that do not
have sawtooth cycles. As in the approximation algorithms for confluent
flows presented in Chapter 3, a common operation in the approximation
algorithm of Donovan et al. [7] is the operation of eliminating sawtooth
cycles, given in Procedure 3.3. It is straightforward that the following two
lemmas hold for the operation of eliminating sawtooth cycles.

Lemma 4.2. If the congestion at each vertex is bounded by 1, performing
EliminateSawtooth(C, f) guarantees that the congestion at each vertex in
the original graph is still bounded by 1.

Lemma 4.3. Performing EliminateSawtooth(C, f) for some sawtooth cy-
cle C eliminates C, i.e., C is no longer a sawtooth cycle.

We note that, due to edge contraction operations, unshrinking a vertex
may lead to a directed path in the original graph whose internal vertices have
out-degrees 1. Hence, it is not entirely trivial to see that the congestion

45

4.2. Acyclic Digon-Tree Representations

at each of these internal vertices is still bounded by 1 after performing
EliminateSawtooth(C, f). However, we observe that the congestions at
the endpoints of such a directed path must be at least the congestion of any
internal vertex. Therefore, Lemma 4.2 holds.

Finally, we note that performing Contract(v) may lead to new saw-
tooth cycles, and that performing EliminateSawtooth(C, f) may lead to
new vertices with out-degrees 1. However, each edge contraction reduces
the number of vertices by 1 in the graph, and each sawtooth cycle elimina-
tion reduces the number of edges by 1 in the support graph. The following
lemma therefore follows.

Lemma 4.4. If we perform Contract(v) and EliminateSawtooth(C, f)
whenever possible, then within a polynomial number of steps, we obtain a
directed graph and a flow on it whose support graph is acyclic and contains
neither sawtooth cycles nor vertices of out-degrees 1.

4.2 Acyclic Digon-Tree Representations

Having defined the operation of eliminating sawtooth cycles in a directed
graph, two question that naturally arises is the following: What does a
directed graph look like if it does not contain sawtooth cycles? How does it
help with algorithm design for d-furcated flows?

It is indeed very intriguing that a directed graph with no sawtooth cycles
admits a very nice “layered” structure, called an acyclic digon-tree repre-
sentation, that naturally inspires an algorithm that processes the vertices in
a layered order (i.e., from sources to sinks, or from sinks to sources).

To describe this characterization, we first associate with each directed
graph G an auxiliary graph Ĝ = (V + ∪ V −, Ê) defined as follows. For each
vertex v ∈ V , we add two copies v+ and v− to V + and V −, respectively.
The edge set Ê of Ĝ contains three types of deges:

• For v ∈ V , we add (v−, v+) to Ê, called a vertex edge.

• For (v, w) ∈ E, we add (v−, w+) to Ê, called a real edge.

• For (v, w) ∈ E, we add (w+, v−) to Ê, called a complementary edge.

According to this construction, Ĝ is bipartite. In graph theory, a digon is
a pair of two edges that form a simple directed cycle of length 2. There-
fore, according to the construction above, an edge in the original graph G
corresponds to a digon in its auxiliary graph Ĝ. A comparison between the
original graph G and its auxiliary graph Ĝ is given in Figure 4.1.

46

4.2. Acyclic Digon-Tree Representations

u

v

w

(a) The original graph G.

u+

u− v+

v−

w+

w−

(b) The auxiliary graph Ĝ.

Figure 4.1: A comparison between the original directed graph G and its
auxiliary graph Ĝ, where red, blue and green edges denote vertex, real and
complementary edges, respectively.

The first graph-theoretic characterization of Donovan et al. [7] asserts
that whether a directed graph contains sawtooth cycles or not can be de-
termined by the maximum length of a directed cycle in the auxiliary graph.
We note, however, that this equivalence is not very practical in algorithm
design in the sense that the problem of finding a longest cycle in a directed
graph is NP-hard, and this hardness result can be shown by a reduction
from the Hamiltonian cycle problem. An even stronger hardness result, due
to Björklund et al. [1], states that the problem of finding a longest cycle
cannot be approximated within a factor of n1−ε in polynomial time for any
ε > 0 unless P = NP.

Lemma 4.5. A directed acyclic graph G contains a sawtooth cycle if and
only if the auxiliary graph Ĝ contains a simple circle of length at least 3
(and hence at least 4 since Ĝ is bipartite).

Proof. (⇐=) Let C = (v−1 , v
+
2 , v

−
3 , v

+
4 , . . . , v

+
2r) be a directed cycle in Ĝ of

length at least 4 for some v1, . . . , v2s ∈ V . We observe the following patterns
of edges in the auxiliary graph Ĝ:

• a vertex edge is followed by a complementary edge;

• a real edge is followed by a complementary edge;

• a complementary edge is followed by a real edge or a vertex edge.

Therefore, we have the following two cases:

• C has alternating complementary and vertex edges. This, however,
corresponds to a cycle in G, contradicting the acyclicity of G.

47

4.2. Acyclic Digon-Tree Representations

(a) The directed graph D. (b) The undirected graph D̃.

Figure 4.2: An example of an undirected graph D̃ edge-induced by the
digons in a directed graph D. In this example, D does not admit an acyclic
digon-tree representation because D̃ is not a forest.

• E(C) can be partitioned into blocks of a real edge followed by an
odd, alternating path of complementary and vertex edges. Each real
edge corresponds to an edge in G, and each odd, alternating path of
complementary and vertex edges corresponds to the reverse of a path
in G. Therefore, C corresponds to a sawtooth cycle in G.

(=⇒) Let C be a sawtooth cycle in G of the form (3.1). Then each edge
(ui, vi) corresponds to a real edge in Ĝ, and the reverse each directed path
Pi corresponds to an odd, alternating path of complementary and vertex
edges, which has length at least 2. Therefore, C corresponds to a directed
cycle of length at least 3 in Ĝ.

While the above characterization of sawtooth cycles in terms of directed
cycles in the auxiliary graph is not directly practical in algorithm design,
it bridges the gap between sawtooth cycles and digon-tree representations,
which we define below. Let D be a directed graph such that the underlying
undirected graph D̃ edge-induced by the digons of D is a forest. We say
that the subgraph of D corresponding to each tree in D̃ is a digon tree.
That is, there exists a bijection between the digons of D and the edges
of D̃. We define the digon-tree representation D of D to be obtained by
contracting each digon of D. In other words, each forest in D̃ corresponds
to a vertex in D, each inter-tree edge corresponds to an edge between the
associated vertices, and each intra-tree edge corresponds to a self-loop at the
associated vertex. A vertex in D is called a digon-tree vertex. A vertex that
is not the endpoint of a digon in D corresponds to a singleton digon-tree
veretx in D.

The second half of the acyclic digon-tree representation characterization
connects the maximum length of a cycle in a directed acyclic graph and the
acyclicity of its digon-tree representation. This result first appears in [25].

48

4.2. Acyclic Digon-Tree Representations

Lemma 4.6. Let D be a directed graph with no self-loops. Then D has no
directed cycles of length at least 3 if and only if it has an acyclic digon-tree
representation.

Proof. (=⇒) Suppose that D has no directed cycles of length at least 3.
If D̃ contained a cycle (of length at least 2), then it would correspond to a
cycle of length at least 4 in D, a contradiction. Hence, D̃ is a forest, so D
has a digon-tree representation D.

Suppose for the sake of contradiction that D contains a self-loop e at
a digon-tree vertex T . Since e cannot correspond to an edge in a digon
(otherwise it would be contracted), then e corresponds to an edge (u, v) in
D for some u, v non-adjacent in T . Then (u, v) and the digons corresponding
to the edges in the unique path between u and v in T contain a directed
cycle of length at least 3 (which consists of (u, v) and one of the two edges
in each digon), a contradiction.

Suppose for the sake of contradiction that D contains a directed cycle
C = (T0, . . . , Tr−1) for some r ≥ 2. Then for each i ∈ {0, . . . , r − 1}, there
exists (ui, vi) ∈ E(D) such that ui ∈ V (Ti), vi ∈ V (Ti+1), with subscripts
modulo r. Moreover, for each i ∈ {0, . . . , r − 1}, either vi−1 = ui, or there
exists a directed vi−1-ui path, with subscripts modulo r. This implies that
there exists a directed cycle C in D. Note that C cannot be a digon, because
otherwise C would correspond to an edge in D̃, which will be contracted in
D, and hence fail to correspond to an edge in D. Therefore, C is a directed
cycle of length at least 3 in D, a contradiction.

(⇐=) Let D be an acyclic digon-tree representation. Suppose for the
sake of contradiction that D contains a directed cycle C = (v1, . . . , vr) of
length at least 3. If v1, . . . , vr ∈ V (T) for some tree T in D̃, then there
would exist an edge e in C that is not an edge in T (since T is acyclic), but
then e would be an intra-tree edge in D and hence correspond to a self-loop
in D, a contradiction. Therefore, there exist T1, . . . , Ts ∈ V (D) visited by
C in that order for some s ≥ 2. This implies that (T1, . . . , Ts) is a directed
cycle in D, a contradiction.

Since the auxiliary graph Ĝ of a direct graph G does not contain self-
loops by our construction, then combining Lemma 4.5 and Lemma 4.6
gives the following nice characterization of sawtooth-cycle-free direct acyclic
graphs in terms of digon-tree representations.

Theorem 4.7. A directed acyclic graph G contains sawtooth cycles if and
only if its auxiliary graph Ĝ has an acyclic digon-tree representation.

49

4.3. A Layered Structure of Digon Trees

4.3 A Layered Structure of Digon Trees

According to Theorem 4.7, we obtain an acyclic digon-tree representation
after performing sawtooth cycle eliminations. How would such a structural
characterization guide us to devise an algorithm? A benefit of an acyclic
digon-tree representation is a layered structure of digon trees, which allows
us to design an algorithm that processes vertices in an acyclic ordering
(which can be regarded as a generalized topological ordering), redirecting
flow to transform a fractional flow to a d-furcated flow.

Theorem 4.8. Let G be a directed acyclic graph with no sawtooth cycles.
Then the underlying undirected graph G̃ is the union of vertex-induced trees
of G̃ such that

• any vertex v is contained in exactly two of the trees (which possibly
correspond to a singleton digon-tree vertex);

• all outgoing edges from any vertex v are contained in the same tree;

• all incoming edges into any vertex v are contained in the same tree.

Proof. By Theorem 4.7, the auxiliary graph D = Ĝ has an acyclic digon-
tree representation D. Since each digon in D corresponds to an edge in G,
then each digon tree in D̃ corresponds to a tree in the underlying undirected
graph G̃ of G. Therefore, each vertex v is contained in at most two trees
corresponding the two digon trees containing v+ and v− in D.

We note that v+, v− cannot be contained in the same digon tree for each
vertex v ∈ V (G), because otherwise (v−, v+) would correspond to a self-loop
in the digon-tree representation D of Ĝ, contradicting its acyclicity.

We show that each digon tree in D corresponds to an induced tree in G.
Let T̂ be a digon tree in D, with T the corresponding tree in G̃. Suppose
for the sake of contradiction that there exists uv ∈ E(G̃) \ E(T) such that
u, v ∈ V (T). This implies that the digon between u− and v+ is not contained
in T , so this digon is contained in some other digon tree T ′ 6= T . Note that
the vertex edges (v−, v+) and (u−, u+) form a directed cycle between the
digon-tree vertices T, T ′2 in D, contradicting the acyclicity of D.

Next, let v ∈ V (G) of out-degree at least 1, and (v, w) ∈ δ+G(v). By the
construction of D, there exists a digon between v− and w+, so this digon
is contained in a digon tree in D. Therefore, v and w are contained in the
same induced tree.

Similarly, let v ∈ V (G) of in-degree at least 1, and (u, v) ∈ δ−G(v). By
the construction of D, there exists a digon between u− and v+, so this digon

50

4.3. A Layered Structure of Digon Trees

is contained in a digon-tree in D. Therefore, v and w are contained in the
same induced tree.

Moreover, the construction of the auxiliary graph Ĝ of G implies that
s+ is not incident to a digon for each source s, and that t− is not incident to
a digon for each sink t. Given Theorem 4.8, the following corollary follows.

Corollary 4.9. For each sink t in G, t− is in a singleton digon-tree vertex
in D. For each source s in G, s+ is in a singleton digon-tree vertex in D.

Finally, the construction of Ĝ ensures that the partition {V +, V −} of
V (Ĝ) gives a two-colouring of each digon tree in Ĝ. That is, the vertex set
of each digon tree T̂ in Ĝ can be partitioned into X ∪ Y such that X ⊆ V +

and Y ⊆ V −. By Theorem 4.8, we have the following corollary.

Corollary 4.10. The vertex set of each digon tree T̂ in Ĝ can be partitioned
into X∪Y such that X ⊆ V +, Y ⊆ V −, and that X,Y correspond to disjoint
subsets X ′, Y ′ ⊆ V (G), respectively. Moreover, δ+G(X ′) = Y ′, δ−G(Y ′) = X ′.

To conclude this section, we discuss some intuition beyond the structural
results proved in this section. Given a directed graph G, the acyclicity of the
corresponding digon-tree representationD ensured by Theorem 4.7 naturally
gives rise to a “source-to-sink” topological ordering of the digon-tree vertices
in D. If we process the digon trees in the auxiliary graph in this order, then
each of the vertices from the V − part of the partition in the current digon
tree T̂ correspond to a vertex from the V + part of the partition in some other
digon tree T̂ ′ 6= T̂ . However, the corresponding vertex edge together with
the topological ordering ensures that T̂ ′ must have been processed before
T̂ . Therefore, if we have a subroutine to process each digon tree to d-fucate
flow, then we can redirect in the entire graph to obtain a d-furcated flow.

Inspired by this acyclic digon-tree representation characterization, the
remaining task, therefore, is to devise a procedure to “d-furcate” a fractional
flow, assuming that the vertices from the V − part of the partition have
already been processed with a congestion at most 1

d−1 . This gives rise to a
proof by induction on the acyclic ordering of digon trees described above.
In other words, we are able to redirect flow “locally,” and the acyclic digon-
tree representation theorem automatically gives us a “global” d-furcated
flow. This demonstrates the power of the acyclic digon-tree representation
characterization! We formalize this idea in the next section.

51

4.4. Local Flow Redirection

4.4 Local Flow Redirection

As discussed in Section 4.3, the final phase of the approximation algorithm of
Donovan et al. [7] is to design a procedure to “d-furcate” flow in each digon
tree locally. The next elementary lemma is at the centre of our procedure.

Lemma 4.11. Let T be a tree with bipartition classes X and Y such that
each vertex of Y has degree at least 2. Then there exists s ∈ Y with at most
one non-leaf neighbour in T .

Proof. Let X ′ ⊆ X be the set of non-leaf vertices in X. Then each vertex in
X ′ has at least two neighbours in Y . Suppose for the sake of contradiction
that each vertex in Y has at least two neighbours in X ′. Hence, X ′ ∪ Y
induces a bipartite graph with minimum degree 2, which therefore contains
a cycle, contradicting the acyclicity of T .

Now, we assume that G contains neither directed cycles nor sawtooth
cycles, and that each vertex of G has out-degree at least 2. This assumption
is guaranteed by directed cycle eliminations, sawtooth cycle eliminations
and edge contractions introduced in Section 4.1. Theorem 4.7 implies that
the auxiliary graph Ĝ of G has an acyclic digon-tree representation D. Then
there exists a “source-to-sink” topological ordering (T1, . . . , Tk) of the digon-
tree vertices in D. That is, an edge (T, T ′) in D implies that T ′ must be
before T in the topological ordering. We process the digon trees in Ĝ in this
order, omitting singleton digon-tree vertices.

Let T be the current digon tree in Ĝ with bipartition classes X ⊆ V +

and Y ⊆ V − given in Corollary 4.10. Let v− ∈ Y . By Theorem 4.8, v+

is contained in some other digon tree T ′ 6= T (which may correspond to
a singleton digon-tree vertex). Since (v−, v+) is a vertex edge in Ĝ, then
(T, T ′) is an edge in D. The topological ordering of the digon-tree vertices
guarantees that T ′ must have been processed before we process T . We
summarize this discussion in the following lemma.

Lemma 4.12. There exists an order of digon trees in Ĝ such that processing
the digon trees in this order ensures that the currently processed digon tree
T has the following property: For each v− in the V − part of the bipartition
of V (T), we have that v+ is contained in an already processed digon tree.

In other words, if we remove a digon tree and its outgoing edges in D
immediately after it is processed, then the V − part of the bipartition of the
currently processed digon tree correspond to a subset of sources in G [7].

52

4.4. Local Flow Redirection

s

vr v1 . . . vr−1

Figure 4.3: An illustration of flow redirection in the original graph, where
s has at most one non-leaf neighbour vr and v1, . . . , vr−1 are leaves in the
underlying undirected graph.

We now describe flow redirection (i.e., d-furcation) in each digon tree
by an inductive proof for the following theorem. We denote by f(v) the
congestion at a vertex v for some flow f on G.

Theorem 4.13. Let f be a fractional flow with the congestion at each vertex
at most 1. There exists a d-furcated flow such that the congestion at each
vertex v is at most f(v) + 1

d−1 . In particular, there exists a d-furcated flow

such that the congestion at each vertex is at most 1 + 1
d−1 .

Proof. Let T be the currently processed digon tree, with bipartition classes
X ⊆ V + and Y ⊆ V −. Let T ′ be the corresponding tree in the underlying
undirected graph of G, with corresponding bipartition classes X ′, Y ′. Since
each vertex of G has out-degree at least 2, then each vertex in Y ′ has degree
at least 2. Lemma 4.11 implies that there exists s ∈ Y ′ with at most one
non-leaf neighbour in T ′. Let v1, . . . , vr be the neighbours of s in T ′ such
that v1, . . . , vr−1 are leaves. An illustration is given in Figure 4.3. Suppose
by induction that the additional congestion at s is at most 1

d−1 . Then we
have the following two cases:

Case 1. r ≤ d. We redirect the additional flow at s, which is at most
1
d−1 , from s to v1. Since v1 is a leaf in T ′, then Corollary 4.10 implies that

the additional flow at v1 is at most 1
d−1 .

Case 2. r ≥ d+ 1. Then v1, . . . , vd are leaves. Hence,

r∑
j=d+1

f (s, vj) ≤
r∑
j=1

f (s, vj) ≤ f(s) ≤ 1.

In this case, we redirect the flow on the edges (s, vj) for j ∈ {d+ 1, . . . , r},
together with the additional flow which is at most 1

d−1 , equally on the edges
(s, v1), . . . , (s, vd). Hence, for each j ∈ [d], the additional flow at vj after the

53

4.5. β-Confluent Flows

redirection is at most

1

d

 r∑
j=d+1

f (s, vj) +
1

d− 1

 ≤ 1

d

(
1 +

1

d− 1

)
=

1

d
· d

d− 1
=

1

d− 1
.

Since v1, . . . , vd are leaves in T , then the additional flows at v1, . . . , vd are
at most 1

d−1 by Corollary 4.10.

This completes the description of the (1+ 1
d−1)-approximation algorithm

of Donovan et al. [7] for the congestion minimization problem on d-furcated
flows with d ≥ 2. We summarize this algorithm in Algorithm 4.2, where f
is a fractional flow on G with the congestion at any vertex at most 1.

4.5 β-Confluent Flows

As a digression, we demonstrate in this section how the approach of Donovan
et al. [7] can be applied to design a constant-factor approximation algorithm
for the congestion minimization problem on β-confluent flows, which can be
regarded as a more restricted version of its counterpart on bifurcated flows.
For β ∈ [0, 1], we say that a flow is β-confluent if each vertex sends at least
a β-fraction of its total incoming flow to a single outgoing edge, and all
remaining flow to at most one other outgoing edge.

We have already seen in Chapter 3 and in this chapter that the vertex
congestion of a bifurcated flow is at most 2, whereas the vertex congestion of
a confluent flow can be as large as Ω(log k) and hence unbounded. This gap
is intriguing, and therefore it would be interesting to study the minimum
congestion of a network flow “between” confluent flows and bifurcated flows.
To that end, β-confluent flows can be regarded as more restricted than
bifurcated flows, but looser than confluent flows. In particular, the case
where β = 0 gives a confluent flow, and the case where β = 1 gives a
bifurcated flow.

For β ∈ (0, 12], we note that a bifurcated flow is also a bifurcated flow.
Consider a bifurcated flow. Let v ∈ V . Suppose that v sends a β′-fraction of
its total incoming flow to a single outgoing edge, and the remaining (1−β′)-
fraction of its total incoming flow to one other outgoing edge, for some β′ ∈
[0, 1]. Without loss of generality, we assume that β′ ≥ 1− β′, which implies
that β′ ≥ 1

2 ≥ β. Therefore, this bifurcated flow is also a β-confluent flow.
It follows that Algorithm 4.2 gives a 2-approximation for the congestion
minimization problem on β-confluent flows with β ∈ (0, 12].

54

4.5. β-Confluent Flows

1 while ∃ a directed cycle C in G do
2 b← min{f(e) : e ∈ E(C)}
3 f(e)← f(e)− b for all e ∈ E(C)

4 while ∃ a sawtooth cycle or a vertex of out-degree 1 in G do
5 if ∃ a sawtooth cycle C in G then
6 EliminateSawtooth(C, f)
7 else if ∃ a vertex of out-degree 1 in G then
8 Contract(v)

9 D ← auxiliary graph of G
10 D ← acyclic digon-tree representation of D
11 (T1, . . . , Tk)← a “source-to-sink” topological ordering of D
12 ε(v)← 0 for all v ∈ V
13 for i← 1, . . . , k do
14 if Ti is a singleton digon-tree vertex in D then
15 continue
16 {X,Y } ← bipartition classes of Ti with X ⊆ V +, Y ⊆ V −
17 choose s− ∈ V − s.t. s− has ≤ 1 non-leaf out-neighbour in Ti
18 (v+1 , . . . , v

+
r)← neighbours of s− in Ti with v+1 , . . . , v

+
r−1 leaves

19 if r ≤ d then
20 f(s, v1)← f(s, v1) + ε(s)
21 ε(v1)← f(v1)− 1

22 else
23 ∆←

∑r
j=d+1 f(s, vj) + ε(s)

24 f(s, vj)← f(s, vj) + ∆/d for all j ∈ [d]
25 ε(vj)← f(vj)− 1

Algorithm 4.2: A (1 + 1
d−1)-approximation algorithm for the con-

gestion minimization problem on d-furcated flows with d ≥ 2.

55

4.5. β-Confluent Flows

The following theorem, from the unpublished journal version of [7], gives
a (1 + β

1−β)-approximation algorithm for the problem when β ∈ (12 , 1). The
proof of this theorem resembles that of Theorem 4.13.

Theorem 4.14. Let f be a fractional flow with the congestion at each vertex
at most 1. For β ∈ (12 , 1), there exists a β-confluent flow such that the

congestion at each vertex is at most f(v)+ β
1−β . In particular, there exists a

β-confluent flow such that the congestion at each vertex is at most 1 + β
1−β .

Proof. The proof only differs from that of Theorem 4.13 in the two cases.
Suppose by induction that the additional congestion at s is at most β

1−β .

Let T be a currently processed digon tree, with bipartition classes X ⊆ V +

and Y ⊆ V −. Let s− ∈ Y and v+1 , . . . , v
+
r ∈ X such that v1, . . . , vr−1 are

leaves in the corresponding tree T ′ in the underlying undirected graph of G.
Suppose by induction that the additional congestion at s is at most β

1−β .
Let ε be the amount of the additional flow at s.

Case 1. r ≤ 2. We send the additional flow at s and redirect ∆ flow
from (s, v2) to (s, v1). In order to ensure that the flow on (s, v1) is at least
a β-fraction of f(s), then ∆ needs to satisfy

f(s, v1) + ε+ ∆ ≥ β(f(s) + ε) = β (f (s, v1) + f (s, v2) + ε) .

This implies that ∆ = max{0, βf(s, v2) − (1 − β)(f(s, v1) + ε)} ≤ f(s, v2)
satisfies the above inequality. If ∆ = 0, then we only send the additional
flow at s to (s, v1). Since v1 is a leaf in T ′, then Corollary 4.10 implies that
the additional flow at v1 is at most ε ≤ β

1−β . Otherwise, since v1 is a leaf in

T ′, then Corollary 4.10 implies that the additional flow at v1 is at most

ε+ ∆ = ε+ βf (s, v2)− (1− β) (f (s, v1) + ε)

= β (f (s, v2) + ε)− (1− β)f (s, v1)

≤ β (f (s, v2) + ε) ≤ β(f(s) + ε)

≤ β
(

1 +
β

1− β

)
=

β

1− β
.

Case 2. r ≥ 3. We send the additional flow at s, ∆ flow from
(s, v2), . . . , (s, vr) to (s, v1), and all remaining flow to (s, v2). Let F =
f(s) − f(s, v1). In order to ensure that the flow on (s, v1) is at least a
β-fraction of f(s), then ∆ needs to satisfy

f (s, v1) + ε+ ∆ ≥ β(f(s) + ε) = β (f (s, v1) + F + ε) .

56

4.5. β-Confluent Flows

This implies that ∆ = max{0, βF − (1−β)(f(s, v1) + ε)} satisfies the above
inequality. Let f ′ be the new flow after redirection. Since f ′ is β-confluent,
then we have that

f ′ (s, v1) ≥ β
(
f ′ (s, v1) + f ′ (s, v2)

)
>

1

2

(
f ′ (s, v1) + f ′ (s, v2)

)
.

Therefore, f ′(s, v2) < f ′(s, v1). If ∆ = 0, then we only send the additional
flow at s to (s, v1), and redirect all remaining flow to (s, v2). Since v1 is a leaf
in T ′, then Corollary 4.10 implies that the additional flow at v1 is at most
ε ≤ β

1−β . Therefore, the additional flow at v2 is also at most β
1−β . Otherwise,

since v1 is a leaf in T ′, then Corollary 4.10 implies that the additional flow
at v1 is at most

ε+ ∆ = ε+ βF − (1− β) (f (s, v1) + ε) = β(F + ε)− (1− β)f (s, v1)

≤ β(F + ε) ≤ β (f(s)− f (s, v1) + ε) ≤ β(f(s) + ε)

≤ β
(

1 +
β

1− β

)
=

β

1− β
.

This gives rise to a (1+ β
1−β)-approximation algorithm for the congestion

minimization problem on β-confluent flows with β ∈ (12 , 1). This upper
bound, however, is not tight. We have shown in Chapter 3 that there exists a
(1+ln k)-approximation algorithm for the congestion minimization problems
on confluent flows. Since each confluent is β-confluent for any β ∈ [0, 1], then
we may substitute the algorithm above with the algorithm of Chen et al. [2]
to obtain a better approximation ratio whenever β

1−β > ln k.

57

Chapter 5

Conclusion

Does the road wind up-hill all the way?
Yes, to the very end.

Will the day’s journey take the whole long day?
From morn to night, my friend.

— Christina Rossetti, Up-Hill

In this thesis, we have presented several approximation techniques in the
theoretical understanding of network flow models with degree constraints.
In Chapter 3, we have seen a repeatedly emerging pattern in approximation
algorithms for confluent flows—a main loop consisting of three operations,
vertex aggregation, sawtooth cycle elimination and sink deactivation. We
have also briefly discussed how variants of sink deactivation can be used to
solve different questions on network flows. In Chapter 4, we have generalized
the notion of sawtooth cycles by relaxing the restriction of only having
reverse edges from frontier vertices to sinks in [2]. We have also seen how
this generalized notion of sawtooth cycles leads to a promising technique
that allows us to process vertices “locally” in each digon tree. In particular,
a directed acyclic graph with no (general) sawtooth cycles admits an acyclic
digon-tree representation, which gives a topological ordering of the digon
trees in the graph.

5.1 Open Questions

Many intriguing questions remain wide open. We list several directions for
future research in network flows with degree constraints:

1. Non-uniform vertex capacities. As discussed in Chapter 1, it would
be interesting to extend existing results for the special case of unit
vertex capacities to graphs with non-uniform vertex capacities. For
confluent flows with non-uniform vertex capacities, Shepherd et al. [24]
give an O(log6 n)-approximation algorithm for demand maximization
either if the no bottleneck assumption is satisfied, or if congestion 2 is

58

5.1. Open Questions

allowed. On the negative side, Shepherd and Vetta [23] prove that, for
confluent flows with non-uniform vertex capacities, both congestion
minimization and demand maximization cannot be approximated to
within O(m0.5−ε) for any ε > 0, unless P = NP.

2. Non-uniform edge costs. The problem of bounded congestion with
arbitrary edge costs is not considered in this thesis. This problem
is intrinsically more difficult to solve because a routing path involves
edge costs along the entire path. Therefore, we may not be able to use
a “local” approach for non-uniform edge costs.

3. Minimum number of confluent rounds. Another natural objective
function is the minimum number of rounds that are necessary to route
all demands by a feasible confluent flow. In other words, we would like
a partition {V1, . . . , Vr} of vertices such that r is minimized and that
the demands in each Vi can be satisfied by a feasible confluent flow.
Note that congestion minimization gives a trivial approximation ratio
of O(log k) for this optimization problem by using the same support
network. It would be interesting to ask whether it is possible to satisfy
all demands in a constant number of rounds.

4. Halfluent flows. A flow is halfluent if each vertex must either send its
total incoming flow to one outgoing edge, or split its total incoming
flow equally to two outgoing edges. Donovan et al. [7] conjecture that
the acyclic digon-tree representation approach may be extended to
achieve a constant gap between bifurcated flows and halfuent flows.

59

Bibliography

[1] Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. Approxi-
mating longest directed paths and cycles. In International Colloquium
on Automata, Languages, and Programming, pages 222–233. Springer,
2004.

[2] Jiangzhuo Chen, Robert D Kleinberg, László Lovász, Rajmohan Ra-
jaraman, Ravi Sundaram, and Adrian Vetta. (Almost) tight bounds
and existence theorems for confluent flows. In Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing, pages 529–538,
2004.

[3] Jiangzhuo Chen, Rajmohan Rajaraman, and Ravi Sundaram. Meet
and merge: Approximation algorithms for confluent flows. Journal of
Computer and System Sciences, 72(3):468–489, 2006.

[4] William H Cunningham. Optimal attack and reinforcement of a net-
work. Journal of the ACM (JACM), 32(3):549–561, 1985.

[5] Efim A Dinic. Algorithm for solution of a problem of maximum flow in
networks with power estimation. In Soviet Math. Doklady, volume 11,
pages 1277–1280, 1970.

[6] Yefim Dinitz, Naveen Garg, and Michel X Goemans. On the single-
source unsplittable flow problem. Combinatorica, 19(1):17–41, 1999.

[7] Patrick Donovan, B Shepherd, Adrian Vetta, and Gordon Wilfong.
Degree-constrained network flows. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pages 681–688, 2007.

[8] Jack Edmonds and Richard M Karp. Theoretical improvements in al-
gorithmic efficiency for network flow problems. Journal of the ACM
(JACM), 19(2):248–264, 1972.

[9] Mark J Eisner and Dennis G Severance. Mathematical techniques for
efficient record segmentation in large shared databases. Journal of the
ACM (JACM), 23(4):619–635, 1976.

60

Bibliography

[10] D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univer-
sity Press, USA, 2010. ISBN 0691146675.

[11] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through
a network. Canadian journal of Mathematics, 8:399–404, 1956.

[12] Giorgio Gallo, Michael D Grigoriadis, and Robert E Tarjan. A fast
parametric maximum flow algorithm and applications. SIAM Journal
on Computing, 18(1):30–55, 1989.

[13] A V Goldberg and R E Tarjan. A new approach to the maximum flow
problem. In Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing, STOC ’86, page 136–146, New York, NY, USA,
1986. Association for Computing Machinery. ISBN 0897911938. doi:
10.1145/12130.12144. URL https://doi.org/10.1145/12130.12144.

[14] Andrew V Goldberg and Robert E Tarjan. A new approach to the
maximum-flow problem. Journal of the ACM (JACM), 35(4):921–940,
1988.

[15] Dan Gusfield. On scheduling transmissions in a network. Yale Univer-
sity, Department of Computer Science, 1986.

[16] Alon Itai and Michael Rodeh. Scheduling transmissions in a network.
Journal of Algorithms, 6(3):409–429, 1985.

[17] Jon M Kleinberg. Approximation algorithms for disjoint paths problems.
PhD thesis, Massachusetts Institute of Technology, 1996.

[18] Jon M Kleinberg. Single-source unsplittable flow. In Proceedings of 37th
Conference on Foundations of Computer Science, pages 68–77. IEEE,
1996.

[19] Stavros G Kolliopoulos and Clifford Stein. Approximation algorithms
for single-source unsplittable flow. SIAM Journal on Computing, 31(3):
919–946, 2001.

[20] Dean H Lorenz, Ariel Orda, Danny Raz, and Yuval Shavitt. How good
can ip routing be. DIMACS Rep, 17, 2001.

[21] Nimrod Megiddo. Optimal flows in networks with multiple sources and
sinks. Mathematical Programming, 7(1):97–107, 1974.

61

https://doi.org/10.1145/12130.12144

Bibliography

[22] Löıc Seguin-Charbonneau and F Bruce Shepherd. Maximum edge-
disjoint paths in planar graphs with congestion 2. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, pages 200–
209. IEEE, 2011.

[23] F. Bruce Shepherd and Adrian R. Vetta. The inapproximability of
maximum single-sink unsplittable, priority and confluent flow prob-
lems. Theory of Computing, 13(20):1–25, 2017. doi: 10.4086/toc.2017.
v013a020. URL http://www.theoryofcomputing.org/articles/

v013a020.

[24] F Bruce Shepherd, Adrian Vetta, and Gordon T Wilfong. Polyloga-
rithmic approximations for the capacitated single-sink confluent flow
problem. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, pages 748–758. IEEE, 2015.

[25] FB Shepherd and A Vetta. Visualizing, finding and packing dijoins.
In Graph Theory and Combinatorial Optimization, pages 219–254.
Springer, 2005.

[26] Daniel D Sleator and Robert Endre Tarjan. A data structure for dy-
namic trees. Journal of computer and system sciences, 26(3):362–391,
1983.

[27] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. Journal of the ACM (JACM), 32(3):652–686, 1985.

[28] Harold S. Stone. Critical load factors in two-processor distributed sys-
tems. IEEE transactions on Software Engineering, (3):254–258, 1978.

[29] Jun Wang and Klara Nahrstedt. Hop-by-hop routing algorithms for
premium-class traffic in diffserv networks. In Proceedings. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies, volume 2, pages 705–714. IEEE, 2002.

62

http://www.theoryofcomputing.org/articles/v013a020
http://www.theoryofcomputing.org/articles/v013a020

	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Algorithms and Procedures
	Acknowledgements
	Dedication
	Introduction
	Definitions
	Thesis Organization

	Fractional Flows
	The Ford-Fulkerson Algorithm
	The Push-Relabel Algorithm
	A Parametric Maximum Flow Algorithm
	The Minimum-Cut Capacity Function
	The Perfect Sharing Problem
	Finding a Minimum Congestion Flow

	Confluent Flows
	Congestion Minimization
	Demand Maximization
	An Hk Lower Bound

	Bi-/d-furcated Flows
	Edge Contractions and Sawtooth Cycles
	Acyclic Digon-Tree Representations
	A Layered Structure of Digon Trees
	Local Flow Redirection
	-Confluent Flows

	Conclusion
	Open Questions

	Bibliography

