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Abstract
We introduce a novel linear-algebraic planarity criterion based on the number of spanning

trees. We call a matrix an incidence submatrix if each row has at most one 1, at most one
−1, and all other entries zero. Given a connected graph G with m edges, we consider the
maximum determinant maxdet(G) of an m × m matrix [M |N ], where M is the incidence matrix
of G with one column removed, over all incidence submatrices N of appropriate size, and define
its excess to be the number of spanning trees in G minus maxdet(G). Given a disconnected
graph, we define its excess to be the sum of the excesses of its connected components. We
show that the excess of a graph is 0 if it is planar, and at least 18 otherwise. This provides a
“certificate of planarity” of a planar graph that can be verified by computing the determinant
of a sparse matrix and counting spanning trees. Furthermore, we derive an upper bound on the
maximum determinant of an m × m matrix [M |N ], where M and N are incidence submatrices.
Motivated by this bound and numerical evidence, we conjecture that this maximum determinant
is equal to the maximum number of spanning trees in a planar graph with m edges. We present
partial progress towards this conjecture. In particular, we prove that the maxdet(·) value of any
subdivision of K3,3 or K5 is at most that of the best planar graph with the same number of
edges.

1 Introduction

There has been a series of works studying characterizations of planar graphs, including several
algebraic ones; see, e.g., [9, 18, 2, 13, 17, 16, 3, 14, 4]. In this paper, we provide a new one based
on linear algebra and the number of spanning trees, whose flavor is quite distinct from those of
existing ones. In particular, our characterization allows one to give a “certificate of planarity” for
any planar graph that can be easily verified by computing the determinant of a sparse matrix and
counting spanning trees.

Throughout this paper, we allow graphs to have multiple edges between two vertices. Given a
graph G, we let τ(G) denote the number of spanning trees in G, and define a truncated incidence
matrix of G to be a matrix obtained by removing an arbitrary column from an (oriented) incidence
matrix of G. We say that a matrix is an incidence submatrix if each row has at most one 1 and
at most one −1, with all other entries zero. Given a connected graph G with n vertices and m
edges (so that m ≥ n − 1), we let maxdet(G) denote the maximum determinant of an m × m
matrix [M |N ], over all truncated incidence matrices M of G and over all incidence submatrices N
of appropriate size. Given a connected graph G, we define ε(G) := τ(G) − maxdet(G), called the
excess of G. Given a disconnected graph G, we define its excess, denoted by ε(G), to be the sum
of the excesses of its connected components.

First, we show that the excess of a graph is always nonnegative, justifying the name “excess.”
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Proposition 1.1. For any graph G, we have ε(G) ≥ 0.

Our contributions in this paper are threefold.

A new planarity criterion. Our main result is the following characterization of planar graphs,
demonstrating a dichotomy between planar and nonplanar graphs in terms of their excesses.

Theorem 1.2. Let G be a graph. Then

ε(G)
{

= 0, if G is planar,
≥ 18, otherwise.

We remark that the lower bound of 18 on the excess of a nonplanar graph is tight; it is achieved
by K3,3.

Subdivisions of K3,3 and K5. One motivation of the maxdet(·) function is as follows. Although
the maximum number of spanning trees in a nonplanar graph with a fixed number of edges can be
much greater than that in any planar graph with the same number of edges, we conjecture that the
maximum maxdet(·) value over a graph with m edges is always achieved by a planar graph, i.e.,
that the best planar graph “dominates” all nonplanar graphs in this linear-algebraic sense. For any
m ∈ N, we let τm denote the maximum number of spanning trees in a planar graph with m edges;
this is also the maximum maxdet(·) value of a planar graph with m edges by Theorem 1.2.

Conjecture 1.3. If G is a connected nonplanar graph with m edges, then maxdet(G) ≤ τm.

Conjecture 1.3 is equivalent to Conjecture 1.6 which we discuss below. Our second result gives
partial progress towards this conjecture.

Theorem 1.4. If G is a subdivision of K3,3 or K5 with m edges, then we have maxdet(G) ≤ τm.

Upper bounding ∆m and τm. We say that a matrix is a bi-incidence matrix if it is the concate-
nation [M |N ] of two incidence submatrices M and N . To prove Theorem 1.2, for any connected
planar graph G with m edges, we give a construction of an m × m bi-incidence matrix P such that
| det(P )| = τ(G). This construction implies τm is at most the maximum determinant, ∆m, of an
m × m bi-incidence matrix. By an elementary linear-algebraic argument using multilinearity of
determinants and the pigeonhole principle, we show that ∆m ≤ δm for all m ∈ N, where δ ≃ 1.8393
is the unique real root of the equation x3 −x2 −x−1 = 0. This gives an upper bound on τm, which
matches the current best upper bound of Stoimenow [15] who used a knot-theoretic argument.
Summarizing, we have the following theorem.

Theorem 1.5. For all m ∈ N, we have τm ≤ ∆m ≤ δm, where δ ≃ 1.8393 is the unique real root
of the equation x3 − x2 − x − 1 = 0.

We remark that an asymptotic lower bound exp((2G/π − o(1)) · m) ≥ 1.7916m on τm is known
(see, e.g., [19, 6]), where G = ∑∞

k=0(−1)k/(2k + 1)2 ≃ 0.9160 is Catalan’s constant. This lower
bound is achieved by square grid graphs.

Theorem 1.4, together with computations of τm and ∆m for small values of m (see Table 1),
motivates us to propose the following conjecture, which is equivalent to Conjecture 1.3.

Conjecture 1.6. For all m ∈ N, we have τm = ∆m.
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m 1 2 3 4 5 6 7 8 9 10
τm 1 2 3 5 8 16 24 45 75 130
∆m 1 2 3 5 8 16 24 45 75 130

Table 1: Values of τm and ∆m for m = 1, . . . , 10.

1.1 Outline

The paper is organized as follows. In Section 2, we introduce definitions and conventions, with
results regarding operations that preserve the bi-incidence property of a matrix and the absolute
value of its determinant (when the matrix is square). In Section 3, we introduce a simple yet
powerful lemma called the merge-cut lemma, and prove Proposition 1.1. In Section 4, we prove
Theorem 1.2. In Section 5, we prove Theorem 1.4. In Section 6, we prove Theorem 1.5. In Section 7,
we give concluding remarks with future directions.

2 Preliminaries

We start with standard definitions from linear algebra and graph theory to ensure consistency; the
reader familiar with these standard definitions can skip to Definition 2.6. Throughout this paper,
we allow multiple edges between two vertices in a graph.

Definition 2.1. Given an m × n matrix M = (ai,j) and an m × k matrix N = (bi,j), we define
their concatenation to be an m × (n + k) matrix, denoted by [M |N ] = (ci,j), where

ci,j :=
{

ai,j , if j ≤ n,
bi,j−n, otherwise,

for all i ∈ [m] and j ∈ [n + k].

Definition 2.2. Given a graph G = (V, E) and e ∈ E, we let G/e denote the graph obtained by
contracting e in G, and let G \ e denote the graph obtained by removing e from G.

Definition 2.3. We define subdivision to be a graph operation that creates a new vertex w and
replaces an edge uv with edges uw and vw. We say that a graph obtained from repeated subdivision
operations on a graph G is a subdivision of G. We say that the vertices created in subdivision
operations are internal vertices.

Definition 2.4. Given a directed graph D = (V, A), define its incidence matrix to be an A × V
matrix, denoted by ιD = (ae,v), where

ae,v :=


1, if e enters v,
−1, if e leaves v,
0, otherwise,

for all e ∈ A and v ∈ V . We say that a matrix is an incidence matrix if it is the incidence matrix
of some directed graph.
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Definition 2.5. Given a planar directed graph D, construct its directed planar dual graph D∗ as
follows. The vertices of D∗ are the faces of a planar embedding of the underlying undirected graph
of D (including the outer face). For each arc e in D, we introduce its dual arc in D∗ connecting
the two vertices in D∗ corresponding to the two faces in D that meet at e, whose orientation is
obtained by “rotating” the orientation of e by 90◦ counterclockwise. The underlying undirected
graphs of D and D∗ are called the planar dual graph of each other.

Next, we define truncated incidence matrices and incidence submatrices.

Definition 2.6. We define a truncated incidence matrix of a directed graph D, denoted by ι̃D, to
be a matrix obtained by removing an arbitrary column from ιD. We define an incidence matrix
(resp. truncated incidence matrix) of an undirected graph to be an incidence matrix (resp. truncated
incidence matrix) of an orientation of the graph. We say that a matrix is an incidence submatrix
if each row has at most one 1 and at most one −1, with all other entries zero.

The following proposition is easy to see, by appending to M a vector such that the sum of the
columns of the resulting matrix is the all-zero vector.

Proposition 2.7. For each incidence submatrix M , there exists a unique directed graph D such
that ι̃D is equal to M up to all-zero rows.

Now, we are ready to define a central concept in this paper, the notion of bi-incidence matrices.

Definition 2.8. We say that a matrix P is a bi-incidence matrix if P is the concatenation [M |N ]
of two incidence submatrices M and N , which we call the left and right sides of P , respectively.
(Sometimes, we also refer to the left and right sides of a matrix that is not necessarily a bi-
incidence matrix when they are clear from the context, e.g., when the matrix is obtained from
some transformation on a bi-incidence matrix.)

We define the maxdet(·) function over connected graphs.

Definition 2.9. Given a connected graph G, we use maxdet(G) to denote the maximum determi-
nant of a square concatenation [M |N ] over all truncated incidence matrices M of G and over all
incidence submatrices N of appropriate size.

We remark that, without loss of generality, we can fix an orientation D of G with a truncated
vertex in ι̃D in the definition of maxdet(·).

Now, we define the spanning tree number and the excess of a graph.

Definition 2.10. Given a graph G, we let τ(G) denote the number of spanning trees in G. Given a
connected graph G, we define the excess of G to be ε(G) := τ(G)−maxdet(G). Given a disconnected
graph G, we define its excess, denoted by ε(G), to be the sum of the excesses of its connected
components.

Finally, we define two sequences (τm)∞
m=1 and (∆m)∞

m=1 for the two extremal problems consid-
ered in this paper.

Definition 2.11. For all m ∈ N, we let τm denote the maximum number of spanning trees in a
planar graph with m edges, and let ∆m denote the maximum determinant of an m×m bi-incidence
matrix.

Since flipping the signs of all entries in a row changes the sign of the determinant, the minimum
determinant of an m × m bi-incidence matrix is −∆m. Hence, ∆m ≥ 0.
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2.1 Operations Preserving Bi-incidence and Determinants

We provide results on operations that preserve the bi-incidence property of a matrix and the
absolute value of its determinant (when the matrix is square). We start with a list of operations
that preserve the bi-incidence property of a matrix.

Proposition 2.12. Let M be a bi-incidence matrix. The following operations on M result in a
bi-incidence matrix:

(a) removing a column from M ;
(b) removing a row from M ;
(c) ( combination) replacing two columns from the same side of M by their sum;
(d) swapping two columns from the same side of M ;
(e) swapping two rows of M ;
(f) swapping the left and right sides of M ;
(g) ( realignment) replacing a column by −1 times the sum of all columns from its side in M .

In particular, the last four operations do not change the size of M and preserve the absolute value
of the determinant of M when M is square.

The proof of Proposition 2.12 immediately follows from the definition of bi-incidence matrices.
Now, we provide an operation that eliminates a row whose restriction to one side of a square

bi-incidence matrix has zeros only, while preserving the bi-incidence property of the matrix and
not decreasing the absolute value of its determinant.

Proposition 2.13. Let [M |N ] be a square bi-incidence matrix with left and right sides M and N ,
respectively, such that N has at least one column. Suppose that there exists a row r of [M |N ] whose
restriction to the left side has zeros only.

(a) If the restriction of row r to the right side has zeros only, then removing row r and any column
on the right side of [M |N ] results in a square bi-incidence matrix P with det([M |N ]) = 0 ≤
| det(P )|.

(b) If row r has exactly one nonzero entry in column c, then removing row r and column c from
[M |N ] results in a square bi-incidence matrix P with | det([M |N ])| = | det(P )|.

(c) If row r has exactly two nonzero entries in columns c1 and c2, respectively, then removing row
r and replacing columns c1 and c2 with c1 + c2 (i.e., combining c1 and c2) in [M |N ] results
in a square bi-incidence matrix P with | det([M |N ])| = | det(P )|.

Proof. The first case is trivial. The second case follows from the expansion of the determinant
along row r. For the third case, since the (r, c1)-entry and the (r, c2)-entry are exactly one 1 and
one −1, adding column c1 to c2 in [M |N ] results in a square matrix P0 that has exactly one nonzero
entry in row r, such that | det([M |N ])| = | det(P0)|. The lemma follows from the expansion of the
determinant along row r.

Proposition 2.13 can be repeatedly applied to eliminate all rows whose restrictions to the left
side of a square bi-incidence matrix have zeros only, while preserving the bi-incidence property of
the matrix and not decreasing the absolute value of its determinant.
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Corollary 2.14. Let [M |N ] be a square bi-incidence matrix with left and right sides M and N ,
respectively. Suppose that there exists a set R of rows of [M |N ] whose restrictions to the left side
have zeros only. Let M0 be the matrix obtained by removing rows in R from M . Then either
det([M |N ]) = 0, or there exists a matrix N ′, obtained by removing rows in R from N and a
sequence of |R| removal and combination operations on columns of N , such that | det([M |N ])| =
| det([M0|N ′])|.

Proof. Suppose that [M |N ] is m×m and that N has ℓ columns. If |R| ≤ ℓ, then repeatedly applying
Proposition 2.13 for |R| times proves the lemma. Otherwise, repeatedly applying Proposition 2.13
for ℓ times results in a bi-incidence matrix P with an all-zero row such that | det([M |N ])| ≤
| det(P )| = 0, so det([M |N ]) = 0.

By swapping the left and right sides in the concatenation, which does not change the absolute
value of the determinant, we obtain the following analogous corollary.

Corollary 2.15. Let [M |N ] be a square bi-incidence matrix with left and right sides M and N ,
respectively. Suppose that there exists a set R of rows of [M |N ] whose restrictions to the right
side have zeros only. Let N0 be the matrix obtained by removing rows in R from N . Then either
det([M |N ]) = 0, or there exists a matrix M ′, obtained by removing rows in R from M and a
sequence of |R| removal and combination operations on columns of M , such that | det([M |N ])| =
| det([M ′|N0])|.

3 Merge-Cut Lemma

In this section, we introduce a simple yet powerful lemma, which we call the merge-cut lemma.

Lemma 3.1 (merge-cut lemma). For any connected graph G = (V, E) and e ∈ E with G \ e
connected, we have maxdet(G) ≤ maxdet(G/e) + maxdet(G \ e).

The merge-cut lemma is reminiscent of the deletion-contraction relation for the number of
spanning trees.

Proposition 3.2. For any graph G = (V, E) and e ∈ E, we have τ(G) = τ(G/e) + τ(G \ e).

Combining Lemma 3.1 and proposition 3.2, we obtain the following alternative form of the
merge-cut lemma in terms of the excess of a graph.

Corollary 3.3. For any connected graph G = (V, E) and e ∈ E with G \ e connected, we have
ε(G) ≥ ε(G/e) + ε(G \ e).

Now, we prove the merge-cut lemma.

Proof of Lemma 3.1. Let G = (V, E) be a connected graph with m edges, and let e ∈ E be such
that G \ e is connected. Let P = [ι̃D |M ] attain maxdet(G) for some fixed orientation D of G.
Then maxdet(G) = det(P ). Let r = (r1, . . . , rm) ∈ Rm be the row of P corresponding to e. Let
rL = (rL

1 , . . . , rL
m), rR = (rR

1 , . . . , rR
m) ∈ Rm be defined by

rL
j :=

{
rj , if j ≤ n − 1,
0, otherwise,

rR
j :=

{
0, if j ≤ n − 1,
rj , otherwise,
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for all j ∈ [m]. Then r = rL + rR. Let P L and P R be the matrices obtained by replacing row
r with rL and with rR, respectively, in P . By multilinearity of determinants, we have det(P ) =
det(P L) + det(P R).

First, we show that det(P R) ≤ maxdet(G \ e). Without loss of generality, we assume that
det(P R) ̸= 0. Let L0 be the matrix obtained by removing row r from ι̃D. By Corollary 2.14, there
exists a matrix M ′, obtained by removing row r from M followed by combining two columns or
removing one column, such that | det(P R)| = | det([L0|M ′])|. It is easy to see that L0 is a truncated
incidence matrix of G \ e. Hence, det(P R) ≤ maxdet(G \ e).

Second, we show that det(P L) ≤ maxdet(G/e). Without loss of generality, we assume that
det(P L) ̸= 0. Let M0 be the matrix obtained by removing row r from M . By Corollary 2.15, there
exists a matrix L′, obtained by removing row r from ι̃D followed by combining two columns or
removing one column, such that | det(P L)| = | det([L′|M0])|. We have the following two cases.

• Case 1: one column is removed from ι̃D to obtain L′. Then the two endpoints of e
correspond to the truncated column and the removed column. It is easy to see that L′ is a
truncated incidence matrix of G/e. Hence, det(P L) ≤ maxdet(G/e).

• Case 2: two columns are combined in ι̃D to obtain L′. Then the two endpoints of e
correspond to the two combined columns. It is easy to see that L′ is a truncated incidence
matrix of G/e. Hence, det(P L) ≤ maxdet(G/e).

This completes the proof.

A direct application of the merge-cut lemma is Proposition 1.1.

Proof of Proposition 1.1. It suffices to prove the proposition for the case where G is connected. We
proceed by induction on the number of edges in G. The base case is trivial. For the induction step,
we have the following two cases. If G is a tree, then maxdet(G) = τ(G) = 1. Otherwise, G has a
non-bridge edge e; i.e., G \ e is connected. By the merge-cut lemma and by Proposition 3.2,

maxdet(G) ≤ maxdet(G/e) + maxdet(G \ e) ≤ τ(G/e) + τ(G \ e) = τ(G),

where the second inequality follows from the inductive hypotheses on G/e and G \ e, both of which
have one edge fewer than G. This completes the proof.

4 Planarity Criterion via Excess

In this section, we prove Theorem 1.2.

4.1 Zero Excess of a Planar Graph

Given a connected planar graph G with m edges, to prove maxdet(G) = τ(G), we give a construction
of an m × m bi-incidence matrix M such that | det(M)| = τ(G).

Lemma 4.1. Let G be a connected planar graph. Let D be an orientation of G. Let D∗ be the
directed planar dual graph of D. Suppose that, for each i, the ith rows of ι̃D and of ι̃D∗, respectively,
correspond to the same arc in D (and its dual arc). Then | det([ι̃D | ι̃D∗ ])| = τ(G).

Proof. By Euler’s polyhedral formula and by the connectedness of G, [ι̃D | ι̃D∗ ] is m × m, where m
is the number of edges in G. By Kirchhoff’s matrix-tree theorem, we have det(ι̃T

D ι̃D) = τ(G) and
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det(ι̃T
D∗ ι̃D∗) = τ(G∗), where G∗ is the planar dual graph of G. Since G is planar and connected,

we have τ(G) = τ(G∗).
We show that ι̃T

D ι̃D∗ = 0. Let c be a column vector of ι̃D and c′ a column vector of ι̃D∗ . Let v
be the vertex in G corresponding to c, and f the face of G corresponding to c′. If there is no edge
e of G incident to both v and f , then cTc′ = 0. Otherwise, since edges in G incident to f form a
cycle, there are exactly two edges incident to both v and f . An easy case work on the orientations
of these two edges implies that cTc′ = 0. We illustrate one such case in Figure 1; the other cases
can be checked similarly.

e1

e2

f
v

e1

e2

Figure 1: An example case illustrating the argument in the proof of Lemma 4.1, where the edges and
vertices of G are colored in blue and those of G∗ are colored in red. In this case, the two components
of c corresponding to the two edges incident to v, say e1 and e2, are 1 and −1, respectively, and
the two components of c′ corresponding to e1 and e2 are −1 and −1, respectively, with all other
components zero. Hence, cTc′ = 1 · (−1) + (−1) · (−1) = 0.

This proves that ι̃T
D ι̃D∗ = 0. Hence,

(
det

[
ι̃D ι̃D∗

])2
= det

[
ι̃T
D ι̃D 0
0 ι̃T

D∗ ι̃D∗

]
= det

(
ι̃T
D ι̃D

)
· det

(
ι̃T
D∗ ι̃D∗

)
= τ(G) · τ (G∗) = τ(G)2.

This completes the proof.

v2 v3

v1

f1
f2

(a) A connected planar digraph (in blue) and its
directed planar dual graph (in red), each with 5
edges, where the two circled vertices are the ones
truncated in their truncated incidence matrices,
respectively.



v1 v2 v3 f1 f2
−1 0 0 −1 0
1 −1 0 −1 0
0 1 0 −1 1
0 0 −1 0 1
0 −1 1 0 1



(b) A 5×5 matrix whose determinant has absolute
value equal to the number of spanning trees in the
underlying undirected graph, where each column
corresponds to the vertex or face with the associ-
ated label.

Figure 2: An example of a planar graph with 5 edges and a 5 × 5 bi-incidence matrix illustrating
Lemma 4.1.
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Figure 2 gives an example of a planar graph with 5 edges and a 5 × 5 bi-incidence matrix
illustrating Lemma 4.1.

Lemma 4.1 gives a construction that achieves the upper bound τ(G) on maxdet(G) from Propo-
sition 1.1 for any connected planar graph G. It implies the following two corollaries.

Corollary 4.2. For any planar graph G, we have ε(G) = 0.

Corollary 4.3. For all m ∈ N, we have τm ≤ ∆m.

4.2 Positive Excess of a Nonplanar Graph

Given a nonplanar graph, we apply the merge-cut lemma again to derive a positive lower bound
on its excess.

Lemma 4.4. For any nonplanar graph G, we have ε(G) ≥ 18.

Proof. It suffices to prove the lemma for the case where G is connected. First, it can be computed
that ε(K3,3) = 18 and ε(K5) = 25. (It is not practical to use the näıve brute-force algorithm to
compute these two quantities within reasonable time. Our proofs are based on case work. We defer
the details to Appendix A.) By Proposition 1.1, the excess of any graph is nonnegative. Let G be
a nonplanar graph. The merge-cut lemma implies that, for any non-bridge edge e of G,

ε(G) ≥ ε(G/e) + ε(G \ e) ≥ max{ε(G/e), ε(G \ e)}. (1)

By Wagner’s theorem [17], one can obtain either K3,3 or K5 by a sequence of edge contractions and
deletions, in which every intermediate graph is connected. Hence, applying Equation (1) inductively
gives that

ε(G) ≥ min {ε(K3,3), ε(K5)} = 18.

This completes the proof.

Lemma 4.4 and corollary 4.2 together prove Theorem 1.2. This illustrates a dichotomy between
planar and nonplanar graphs in terms of the excess, offering a new characterization of planarity
from perspectives of linear algebra and spanning trees. In addition, our characterization allows one
to give a “certificate of planarity” for a planar graph that can be easily verified by computing the
determinant of a sparse matrix (an m × m matrix with at most 4m nonzero entries, where m is the
number of edges in the graph) and counting spanning trees.

Lemma 4.4 also shows that one cannot find a construction for nonplanar graphs that is similar
to the one given in Lemma 4.1. However, it does not rule out the possibility that a nonplanar
graph has a large number of spanning trees with a positive but small excess, resulting in a larger
determinant than the maximum determinant from planar graphs. In the next section, we rule out
this possibility for subdivisions of K3,3 and K5.

5 Subdivisions of K3,3 and K5

In this section, we prove Theorem 1.4. The key insight behind the proof is to show that either
the left side (in the case of K5) or the right side (in the case of K3,3) of the matrix attaining the
maxdet(·) value is “planar” or can be transformed to be “planar” by careful matrix operations.

Lemma 5.1. If G is a subdivision of K3,3 with m edges, then maxdet(G) ≤ τm.
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Proof. Let D be an orientation of G such that each internal vertex of G has one incoming edge and
one outgoing edge. Then each column in ι̃D corresponding to an internal vertex has exactly one
1 and one −1, with all other entries zero. Let P = [ι̃D |M ] attain maxdet(G), i.e., maxdet(G) =
det(P ). Without loss of generality, we assume that det(P ) > 0.

Fix an edge e of K3,3. Let Ve ⊆ V (G) be the set of internal vertices in G created from
subdividing e. Let Se be the set of edges created from subdividing e. We repeatedly apply the
following procedure until Ve is empty.

• Pick an internal vertex v ∈ Ve whose corresponding column in ι̃D has exactly two nonzero
entries 1 and −1 in rows corresponding to two incident edges e1 and e2, respectively.

• Add row e1 to row e2 in P , so the (e2, v)-entry becomes 0.
• Now, column v has exactly one nonzero entry 1, so we expand the determinant of P along

this column; i.e., we remove column v and row e1 from P .
• Remove v from Ve and replace P with the submatrix from the determinant expansion.

We apply this to every edge in K3,3, resulting in a 9 × 9 matrix P0 = [L0|M0] (which is
not necessarily a bi-incidence matrix) such that L0 is a truncated incidence matrix of K3,3 and
| det(P0)| = det(P ). For the left side, this process “undoes” the subdivision operations to obtain
an orientation of K3,3. By our choice of D, rows in P corresponding to edges in Se are replaced
with a single row corresponding to e, which is equal to the sum of the rows in M corresponding to
Se. This new row can be interpreted as a convex combination after scaling. By multilinearity of
determinants and the maximality of M , we can assume without loss of generality that all rows in
M corresponding to Se are identical.

Then M has at most 9 distinct rows, plus all-zero rows. Let M ′ be the matrix obtained
by removing every all-zero row from M . By Corollary 2.15, there exists a matrix L′ such that
P ′ := [L′|M ′] is a square bi-incidence matrix with | det(P ′)| = det(P ). By Proposition 2.7, there
exists a directed graph D′ such that ι̃D′ = M ′. Let G′ be the underlying undirected graph of D′.
Then G′ has m + 2 − (m − 3) = 5 vertices and at most m edges, among which there are at most 9
distinct edges. By Wagner’s theorem [17], G′ is planar. Since removal and combination operations
on columns of ι̃D correspond to edge contractions in G, we have that G′ is connected. Therefore,

maxdet(G) = det(P ) =
∣∣∣det

[
L′ ι̃D′

]∣∣∣ =
∣∣∣det

[
ι̃D′ L′

]∣∣∣
≤ maxdet

(
G′) = τ

(
G′) ≤ τm.

This completes the proof.

Lemma 5.2. If G is a subdivision of K5 with m edges, then maxdet(G) ≤ τm.

Proof. We apply the same argument as in the proof of Lemma 5.1, obtaining

• a connected graph G′ with m + 2 − (m − 5) = 7 vertices and m edges, among which there are
at most 10 distinct edges;

• an orientation D′ of G′;
• a square bi-incidence matrix P ′ = [L′| ι̃D′ ] such that | det(P ′)| = maxdet(G);
• a 10×10 matrix P0 = [L0|M0] (that is not necessarily a bi-incidence matrix) with | det(P0)| =

| det(P ′)| such that L0 is a truncated incidence matrix of K5.
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(We omit the details for conciseness.) If G′ is planar, then we are done.
Now, suppose that G′ is nonplanar. Let H be the underlying simple graph of G′, which has 7

vertices and at most 10 edges. Since the sum of the degrees of vertices in H is at most 2 · 10 = 20,
there exists a vertex in H with degree at most ⌊20/7⌋ = 2. Since G′ is connected, so is H, implying
that degH(v) ∈ {1, 2}. We have the following two cases.

• Case 1: degH(v) = 1. Then column v in P0 has exactly one nonzero entry. Expanding
the determinant of P0 along column v gives a 9 × 9 submatrix P1 = [L1|M1], where L1 is a
truncated incidence matrix of K5 \ e, i.e., the graph obtained by removing an arbitrary edge
e from K5. Since row e is eliminated in this expansion, the determinant is independent of the
endpoints of e, so we modify e to coincide with another edge e′ in K5, resulting in a connected
planar graph K ′

5 and a new 10 × 10 matrix P ′
0 in place of P0 with the same determinant.

Moreover, we modify the endpoints of the path in G of edges created by subdividing e to
coincide with those of edge e′, obtaining a connected planar subdivision G′′ of K ′

5 with m
edges, while preserving | det(P0)|. Hence, maxdet(G) ≤ maxdet(G′′) = τ(G′′) ≤ τm.

• Case 2: degH(v) = 2. Then column v in P0 has exactly two nonzero entries with values
s, t ∈ Z\{0}, respectively. Let r1, . . . , r10 be the rows of P0. Let e1 and e2 be the edges of K5
whose rows in P0 correspond to the two nonzero entries in column v, respectively. Without
loss of generality, we assume that rows r1 and r2 correspond to e1 and e2, respectively. Then

det (P0) = det [r1, r2, r3, . . . r10]

= −st · det
[
s−1r1, −t−1r2, r3, . . . , r10

]
= −st · det

[
s−1r1, s−1r1 − t−1r2, r3, . . . , r10

]
, (2)

where we use [u1, . . . , uℓ] to denote the matrix formed by rows u1, . . . , uℓ. Let Q be the matrix
obtained by removing column v and row s−1r1 from [s−1r1, s−1r1 − t−1r2, r3, . . . , r10].
Let r′

1 and r′
2 be the restrictions of rows r1 and r2 to the left side of Q. Fix all entries of Q

except the entries in rows r′
1 and r′

2. By multilinearity of determinants and by expanding (2)
along column v, it follows that det(P0), which is equal to −st·det(Q) up to the sign, is a linear
function in s−1r′

1 − t−1r′
2. After scaling, this can be interpreted as a convex combination of

r′
1 (or −r′

1) and r′
2 (or −r′

2). Hence, the maximum of | det(P0)| over all choices of r′
1 and r′

2,
each with at most one 1, at most one −1 and all other entries zero, is achieved when r′

1 = r′
2

or r′
1 + r′

2 = 0. In particular, this maximum occurs when r′
1 and r′

2 correspond to the same
edge e′ in K5.
Hence, we can modify both e1 and e2 to coincide with e′ in K5 (with their orientations possibly
reversed), resulting in a connected planar graph K ′

5 and a new 10×10 matrix P ′
0 in place of P0

with the same determinant. Moreover, we modify the endpoints of the paths from subdividing
e1 and e2, respectively, to coincide with the endpoints of e′ (with their orientations possibly
reversed), obtaining a connected planar subdivision G′′ of K ′

5 with m edges, while preserving
| det(P0)|. Figure 3 illustrates this process. Hence, maxdet(G) ≤ maxdet(G′′) = τ(G′′) ≤ τm.

This completes the proof.

The proof of Lemma 5.2 follows from two useful observations. First, by Wagner’s theorem [17],
modifying one edge in K5 to coincide with another edge in K5 results in a connected planar graph
with the same number of edges. Second, by certain operations on the matrix attaining maxdet(G),
one can show that there must exist paths in the original graph created from subdividing edges in
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(a) A subdivision of K5. (b) A planar graph obtained from this pro-
cess.

Figure 3: Relocating one path in a subdivision of K5 to coincide with another path results in a
planar graph. The dashed edges represent paths resulting from the subdivision operations on K5.

K5 such that changing their endpoints to coincide with the endpoints of another edge in the original
K5 does not decrease the determinant of the matrix. We call this technique the “edge relocation”
method.

It is promising that the edge relocation method is generalizable and has further applications in
extending Theorem 1.4 to a broader class of connected nonplanar graphs. Indeed, if one were able to
generalize Theorem 1.4 to any arbitrary connected nonplanar graph (i.e., to prove Conjecture 1.3),
then Conjecture 1.6 would follow according to Proposition 2.7 and corollaries 2.14 and 2.15.

6 Upper Bounding ∆m

We exploit the sparsity of bi-incidence matrices to obtain an upper bound on ∆m that is exponen-
tially stronger than the trivial upper bound, 2m.

Lemma 6.1. For all m ∈ N, we have ∆m ≤ δm, where δ ≃ 1.8393 is the unique real root of the
equation x3 − x2 − x − 1 = 0.

Proof. We proceed by strong induction on m. The base cases m = 1, 2, 3 are easy to check. Let
m ∈ N with m ≥ 4. For the induction step, we assume that ∆j ≤ δj for all j ∈ [m − 1]. Let
P = [M |N ] = (ai,j) be an m × m bi-incidence matrix that attains ∆m, i.e., ∆m = det(P ). Let c
and d be the sums of the columns in M and in N , respectively. Let M ′ := [−c|M ] and N ′ := [−d|N ].
Then P ′ := [M ′|N ′] is a bi-incidence matrix with m + 2 columns and at most 4m nonzero entries.
By the pigeonhole principle, there exists a column c∗ of P ′ with at most ⌊4m/(m + 2)⌋ ≤ 3 nonzero
entries. By realignment, possibly interchanging M and N , and possibly interchanging rows, we
assume without loss of generality that c∗ is a column in M and that the nonzero entries of c∗ are
the first three entries.

Let k and ℓ be the numbers of columns in M and in N , respectively. For all i ∈ [3], let ri be
the ith row of P , and let rb

i = ((rb
i )1, . . . (rb

i )m) ∈ Rm for b ∈ {0, 1} be defined by

(
r0

i

)
j

:=
{

ai,j , if j ≤ k,
0, otherwise,

(
r1

i

)
j

:=
{

0, if j ≤ k,
ai,j , otherwise,

for all j ∈ [m]. Then ri = r0
i + r1

i for all i ∈ [m]. For all α, β, γ ∈ {0, 1}, let Pα,β,γ be the matrix
formed by rows rα

1 , rβ
2 , rγ

3 , r4, . . . , rm. By multilinearity of determinants,

det(P ) =
∑

α,β,γ∈{0,1}
det (Pα,β,γ) .

We group the summands into the following four cases.
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• Case 1: α = β = γ = 1. Column c∗ of P1,1,1 is all-zero, so det(P1,1,1) = 0.

• Case 2: α = β = 1 and γ = 0. Repeatedly applying Corollaries 2.14 and 2.15 to the first
three rows of P1,1,0 gives an (m − 3) × (m − 3) bi-incidence matrix, whose determinant is at
most ∆m−3.

• Case 3: α = 1 and β = 0. By multilinearity of determinants,∑
γ∈{0,1}

det (P1,0,γ)

is equal to the determinant of the matrix P ′ formed by rows r1
1, r0

2, r3, . . . , rm. Applying
Corollaries 2.14 and 2.15 to the first two rows of P ′, respectively, gives an (m − 2) × (m − 2)
bi-incidence matrix, whose determinant is at most ∆m−2.

• Case 4: α = 0. By multilinearity of determinants,∑
β,γ∈{0,1}

det (P0,β,γ)

is equal to the determinant of the matrix P ′′ formed by rows r0
1, r2, . . . , rm. Applying Corol-

lary 2.15 to the first row of P ′′ gives an (m − 1) × (m − 1) bi-incidence matrix, whose
determinant is at most ∆m−1.

Since δ is a root of the equation x3 − x2 − x − 1 = 0, we have δ2 + δ + 1 = δ3. By the above case
work and by the inductive hypothesis,

∆m = det(P ) =
∑

α,β,γ

det (Pα,β,γ)

= det (P1,1,1) + det (P1,1,0) +
∑

γ∈{0,1}
det (P1,0,γ) +

∑
β,γ∈{0,1}

det (P0,β,γ)

≤ 0 + ∆m−3 + ∆m−2 + ∆m−1

≤ δm−3 + δm−2 + δm−1

= δm−3
(
1 + δ + δ2

)
= δm−3 · δ3 = δm.

This completes the proof.

Proposition 1.1 and lemma 6.1 together prove Theorem 1.5. This upper bound on τm matches
the current best upper bound of [15], who used the connection between links and spanning trees
in planar graphs from knot theory. Our linear-algebraic argument is in some sense “isomorphic” to
their knot-theoretic one.

7 Concluding Remarks

In this paper, we have provided a simple, linear-algebraic planarity criterion that allows one to
give a “certificate of planarity” of a planar graph that can be easily verified by computing the
determinant of a sparse matrix and counting spanning trees. In addition, we have proved that
subdivisions of K3,3 and K5 “underperform” the best planar graph with the same number of edges
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in terms of the maxdet(·) function. As a by-product, our linear-algebraic technique allows us to
derive an upper bound on ∆m (and hence on τm) that matches the current best upper bound by
Stoimenow [15].

Several interesting questions remain open. The main one is Conjecture 1.6.

Problem 7.1. Does Conjecture 1.6 hold? If so, what are the asymptotic behaviors of τm and ∆m?

We remark several potential approaches for proving Conjecture 1.6. First, it might be possible to
generalize Theorem 1.4 to any arbitrary connected nonplanar graph, for which the edge relocation
method used in proving Lemma 5.2 might help.

Problem 7.2. Can Theorem 1.4 and the edge relocation method be generalized to a broader class
of connected nonplanar graphs?

Second, the application of the merge-cut lemma in the proof of Lemma 4.4 is very loose. Most
nonplanar graphs contain many copies of K3,3 and K5 as minors.

Problem 7.3. Can the observation that most nonplanar graphs contain many copies of K3,3 and
K5 as minors be exploited to strengthen Lemma 4.4?

In addition to Conjecture 1.6, our work raises two algorithmic questions.

Problem 7.4. Can the construction from Lemma 4.1 give rise to faster exact or approximate
algorithms for counting spanning trees in a planar graph, possibly by exploiting the sparsity of the
matrix?

To the best our knowledge, the fastest exact algorithm for counting spanning trees in a planar
graph is the one by Lipton, Rose and Tarjan [12] using the planar separator theorem, which runs
in O(n1.5) time, where n is the number of vertices.

Problem 7.5. Can our linear-algebraic characterization of planar graphs lead to efficient algo-
rithms for deciding and testing planarity of a graph?

Several linear-time algorithms for (exact) planarity testing are known; see, e.g., [10, 5, 1]. For
property testing that allows one-sided or two-sided error, sublinear-time algorithms are known in
different models; see, e.g., [11, 7, 8].

The excess can be viewed as a measure of nonplanarity of a graph. Several other measures
of nonplanarity have been extensively studied, such as the crossing number, the genus and the
thickness. It is not hard to show that the excess of a nonplanar graph is at least 18 times its
crossing number, which follows from the merge-cut lemma. It would be interesting to further
compare the excess with these measures.

Problem 7.6. How is the excess of a nonplanar graph related to other measures of nonplanarity?
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A Computing ε(K3,3) and ε(K5)
To make the analysis on K3,3 and K5 easier, we introduce the concept of co-spanning trees.

Definition A.1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that |E1| = |E2| =
|V1|+|V2|−2. Let f : E1 → E2 be a bijection. We say that a spanning tree T of G1 is annihilated by
f if f(E1 \T ) is not a spanning tree of G2. We say that a spanning tree of G1 that is not annihilated
is a co-spanning tree of G1 and G2 under f . We let cospan(G1, G2) denote the maximum number
of co-spanning trees of G1, G2 over all choices of f .

Proposition A.2. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that |E1| = |E2| =
|V1| + |V2| − 2. Let P = [M |N ] be a bi-incidence matrix, where M is a truncated incidence matrix
of G1 and N is a truncated incidence matrix of G2. Then det(P ) ≤ cospan(G1, G2).

Proof. Let M = (ai,j) and N = (bi,j). Let k := |V1| − 1 and m := |E1|. For T ⊆ [m], let SymT

denote the set of all permutations on T . Then

det(P ) =
∑

σ∈Sym[m]

sgn(σ)

 ∏
i∈[k]

aσ(i),i

  ∏
j∈[m−k]

bσ(j+k),j

 .

Note that each permutation σ ∈ Sym[m] can be decomposed as the composition σ1 ◦σ2 ◦σT of three
permutations, where σT is the unique permutation on [m] such that T = {σT (1), . . . , σT (k)} with
σT (1) < . . . < σT (k) and σT (k + 1) < . . . < σT (m), and where σ1 and σ2 are permutations of T
and [m] \ T , respectively. For i ∈ [k], we use T (i) to denote the ith smallest element of T , and
use T (i) to denote the ith smallest element of [m] \ T . Furthermore, for T ⊆ [m], we use MT,[k] to
denote the submatrix of M formed by rows T and columns [k], and use N[m]\T,[m−k] to denote the
submatrix of N formed by rows [m] \ T and columns [m − k]. Hence,

det(P ) =
∑

T ∈([m]
k )

sgn (σT )

 ∑
σ1∈SymT

sgn (σ1)
∏

i∈[k]
aσ1(T (i)),i

  ∑
σ2∈Sym[m]\T

sgn (σ2)
∏

j∈[m−k]
bσ2(T (j)),j


=

∑
T ∈([m]

k )
sgn (σT ) det

(
MT,[k]

)
det

(
N[m]\T,[m−k]

)

≤
∑

T ∈([m]
k )

∣∣∣det
(
MT,[k]

)∣∣∣ ·
∣∣∣det

(
N[m]\T,[m−k]

)∣∣∣
≤ cospan(G1, G2),

where the last inequality holds since | det(MT,[k])| and | det(N[m]\T,[m−k])| are both nonzero if and
only if T is a spanning tree of G1 and [m] \ T is a spanning tree of G2, in which case they are both
equal to 1 as M and N are totally unimodular.
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Now, we have the necessary machinery to compute the values of maxdet(K3,3) and maxdet(K5).
In the proofs, we repeatedly restrict the space of feasible graphs corresponding to the right incidence
submatrix through various bounds. These bounds give us increasingly restrictive information about
both the graph and properties of the bijection, which we then use to prove the desired results.

Proposition A.3. We have maxdet(K3,3) = 63.

Proof. Let maxdet(K3,3) be achieved by [M |N ] where M is a truncated incidence matrix of K3,3
and N is a truncated incidence matrix of a graph G. If G has fewer than 9 edges, then G has at
most 45 spanning trees, as desired. Now, suppose that G has 9 edges and 5 vertices, and is thus
planar.

First, we show maxdet(K3,3) ≤ 63. By Proposition A.2, it suffices to show that cospan(K3,3, G) ≤
63. Suppose otherwise. Let f : E(K3,3) → E(G) be a bijection which yields the maximum num-
ber of co-spanning trees. We refer to two bijectively paired edges as the same edge. Note that
τ(K3,3) = 81. It suffices to show that at least 18 spanning trees of K3,3 are annihilated by f . We
have the following cases.

• Case 1: G has a vertex with degree at most 2. If the vertex has degree two, then
any spanning tree of K3,3 containing these two edges is annihilated. In particular, if these
two edges are incident (resp. not incident) in K3,3, then 21 (resp. 24) spanning trees are
annihilated, as desired. If the vertex has degree one, then G has at most τ8 = 45 ≤ 63
spanning trees, as desired.

• Case 2: G has a triple of three parallel edge. Applying Proposition 3.2 to any two of
these edges, we have τ(G) ≤ 2 · τ6 + τ7 = 53 ≤ 63, as desired.

• Case 3: G has two distinct pairs of two parallel edges each. Then any spanning tree
of K3,3 missing either pair is annihilated. In particular, for each pair, if the edges are incident
(resp. not incident) in K3,3, then 12 (resp. 15) spanning trees are annihilated. There is at
most one spanning tree of K3,3 missing all four of these edges, so at least 23 spanning trees
are annihilated, as desired.

If none of the first three cases holds, then G is obtained from K5 either by removing two edges and
duplicating one edge to a pair of two parallel edges, or by removing one edge from K5.

• Case 4: G is obtained from K5 by removing two edges and duplicating one edge
to a pair of two parallel edges. Since ∑

v∈V (G) degG(v) = 18, there exist two vertices
of G with degree 3. Note that any spanning tree of K3,3 containing either triple of edges is
annihilated. Note also that K3,3 has no triangles. We have four cases for the subgraph of K3,3
induced by the three edges in a triple and the corresponding number of annihilated spanning
trees, depicted in Table 2.
It is impossible to obtain a graph G with 9 edges where these two vertices share two parallel
edges, so there is at most one shared edge between the two triples. Hence, there is at most
one spanning tree annihilated by both triples. If one of the triples annihilates at least 11
spanning trees, then at least 18 spanning trees are annihilated altogether, as desired. Hence,
the two triples are either stars or paths in K3,3.
Now, consider the pair of parallel edges in G. Any spanning tree of K3,3 excluding both of
these edges is annihilated. If the edges are incident (resp. not incident) in K3,3, then 12 (resp.
15) edges are annihilated. In particular, if there are spanning trees annihilated by both the
pair and one of the triples, it can be checked that there are at most 4 of these when the triple
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the subgraph number of annihilated spanning trees

12

11

8

9

Table 2: Four cases for the subgraph of K3,3 induced by three edges and the corresponding number
of annihilated spanning trees.

is a star in K3,3 and at most 5 of these when the triple is a path in K3,3, both of which require
the pair and the triple to be disjoint. Hence, each triple annihilates at least 3 spanning trees
in addition to those already annihilated by the pair.
Now, it follows that the total number of annihilated spanning trees is at least 12+3+3−1 = 17.
The equality can only hold when both triples form paths in K3,3, their union is a spanning
tree, and both are disjoint from the pair. In this case, the shared spanning tree is already
annihilated by the pair, so the number of annihilated spanning trees is at least 12+3+3 = 18.
Hence, there are always at least 18 annihilated spanning trees, as desired.

• Case 5: G is obtained from K5 by removing an edge. Then G is planar, and its planar
dual graph is the envelope graph, depicted in Figure 4.

Figure 4: The envelope graph.

Using the planar duality, it follows that a spanning tree of K3,3 is annihilated if its image
(through f and planar duality) in the envelope graph is not a spanning tree. The envelope
graph has exactly 5 cycles of size at most 4, while K3,3 has 9 cycles of size 4, every two of
which share at most 2 edges. We call a 4-cycle of K3,3 degenerate if its image in the envelope
graph is acyclic. Each cycle of the envelope graph is contained in the image of at most one
4-cycle, so at least four of the 4-cycles are degenerate. Any spanning tree of the envelope
graph containing all four edges of a degenerate 4-cycle is annihilated, and no spanning tree
is annihilated twice. Since the degree of every vertex of the envelope graph is 3, at least
3 spanning trees of the envelope graph are annihilated for each degenerate 4-cycle of K3,3.
Since the envelope graph has 75 spanning trees, it follows that the number of co-spanning
trees is at most 75 − 3 − 3 − 3 − 3 = 63, as desired.
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For equality, it suffices to note that

det



0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 −1 0 0
0 0 0 0 1 −1 1 0 0

−1 0 1 0 0 0 0 1 −1
−1 0 0 1 0 0 1 −1 0
−1 0 0 0 1 0 −1 0 1
0 −1 1 0 0 0 0 −1 1
0 −1 0 1 0 0 0 1 0
0 −1 0 0 1 1 0 0 −1


= 63,

where the left side of the matrix is a truncated incidence matrix of K3,3 and the right side is an
incidence submatrix. This completes the proof.

Proposition A.4. We have maxdet(K5) = 100.

Proof. Let maxdet(K5) be achieved by [M |N ] where M is a truncated incidence matrix of K5 and
N is a truncated incidence matrix of a graph G. If G has fewer than 10 edges, then G has at most
81 spanning trees, as desired. Now, suppose that G has 10 edges and 7 vertices.

First, we show maxdet(K5) ≤ 100. By Proposition A.2, it suffices to show that cospan(K5, G) ≤
100. Suppose otherwise. Let f : E(K5) → E(G) be a bijection which yields the maximum number
of co-spanning trees. We refer to two bijectively paired edges as the same edge. Recall that
τ(K5) = 125. It suffices to show that at least 25 spanning trees of K5 are annihilated by f . We
have the following cases.

• Case 1: G has a pair of two parallel edges. Then any spanning tree of K5 excluding these
two edges is annihilated. In particular, if these two edges are incident (resp. not incident) in
K5, then 40 (resp. 45) spanning trees are annihilated, as desired.

• Case 2: G has a vertex with degree 1. In this case, G has at most τ9 = 75 ≤ 100
spanning trees, as desired.

• Case 3: G has two distinct vertices with degree 2. Consider the pair of edges at each
of these two vertices. Then any spanning tree of K5 containing both edges of either pair is
annihilated. In particular, for each pair, if the two edges are incident (resp. not incident) in
K5, then 15 (resp. 20) spanning trees are annihilated. There is at most one spanning tree of
K5 containing all four of these edges, so at least 29 spanning trees are annihilated, as desired.

Since ∑
v∈V (G) degG(v) = 20, it follows that G has one vertex with degree 2 and six vertices with

degree 3. Hence, G can be obtained from a subdivision on a graph with 9 edges and 6 vertices, each
with degree 3. We have the following two cases based on whether this 6-vertex graph is isomorphic
to K3,3.

• Case 4: G is a subdivision of K3,3. See Figure 5. It can be computed that τ(G) = 117.
Then it follows from Corollary 3.3 and proposition A.3 that ε(G) ≥ ε(K3,3) = 18. Hence, it
follows that det[M |N ] ≤ maxdet(G) ≤ τ(G) − 18 = 99 < 100, as desired.

• Case 5: G is a subdivision of a 9-edge planar graph. In this case, G must be planar,
so consider the planar dual graph H of G. It follows that H is a planar graph with 5 vertices
and 10 edges, with exactly one pair of two parallel edges. Hence, H can be obtained from
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Figure 5: The case when G is a subdivision of K3,3.

K5 by deleting an edge and duplicating another edge into a pair of two parallel edges. In
particular, there are only two isomorphism classes of H: the case when these two edges are
incident (with 110 spanning trees, see Figure 6a) and the case when the edges are not incident
(with 105 spanning trees, see Figure 6b). Using the planar duality, a spanning tree of H is
annihilated if its image (through f and planar duality) in K5 is not a spanning tree.

2

(a) The case when the deleted edge and the dupli-
cated edge are incident.

2

(b) The case when the deleted edge and the dupli-
cated edge are not incident.

Figure 6: Two isomorphism classes of the planar dual graph H that can be obtained from K5 by
deleting an edge and duplicating another edge into a pair of two parallel edges, where the pair of
parallel edges is indicated by the thick edge in each case.

Note that K5 has 10 cycles of size 3, every two of which has at most one overlapping edge.
We call a 3-cycle of K5 degenerate if its image in H is acyclic. We say that a triangle in H
is a triple of three distinct vertices a, b, c ∈ V (H) such that ab, ac, bc ∈ E(H). With slight
abuse of notation, if a 3-cycle of K5 maps to a triple of three edges in H that form a 3-cycle,
then we say that this 3-cycle of K5 maps to the triangle formed by the vertices of the image
in H. Note that H has exactly 7 triangles and one pair of two parallel edges. Since any two
3-cycles of K5 share at most one edge, no two 3-cycles of K5 can map to the same triangle,
or to the same pair of two parallel edges. Hence, there are at least two degenerate 3-cycles of
K5.
Any spanning tree of H containing all three edges of a degenerate 3-cycle of K5 is annihilated
and no spanning tree of H can be annihilated twice. In particular, since the smallest degree
of any vertex in H is 3, it follows that at least 3 spanning trees are annihilated for each
degenerate 3-cycle. Hence, at least 6 spanning trees of H are annihilated, which completes
the proof when H has 105 spanning trees.
Now, we assume that H has 110 spanning trees. We have the following cases.

– Case 5(a): there are exactly two degenerate 3-cycles. Consider the acyclic graph
corresponding to either of the two degenerate 3-cycles. It can be checked that if these
three edges form a disconnected subgraph, then at least 5 spanning trees of H are
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annihilated. If both triples form disconnected subgraphs, then we are done. Otherwise,
a connected triple forms either a path or a star, and in both cases the triple will share
at least two edges with some triangle of H, giving a contradiction.

– Case 5(b): there are exactly three degenerate 3-cycles. If any of the triples maps
to a disconnected subgraph in H, then we are done since H has at most 110−3−3−5 <
100 co-spanning trees. Otherwise, as in the previous case, a triple that maps to a
disconnected subgraph in H shares two edges with a triangle of H, whose pre-image
must not be a 3-cycle in K5. It can be checked that, by taking the XOR of three 3-cycles
of K5 that map to three other triangles in H, we can construct a 3-cycle of K5 which
maps to this triangle, giving a contradiction. We illustrate one such case in Figure 7;
the other cases can be checked similarly.

d e

c

b

a

Figure 7: An example case illustrating the construction in Case 5(b). By taking the XOR of the
3-cycles in K5 mapping to triangles bcd, bde, cde, we obtain a 3-cycle of K5 mapping to triangle bce.

– Case 5(c): there are at least four degenerate 3-cycles. Then H has at most
110 − 3 − 3 − 3 − 3 < 100 co-spanning trees, as desired.

For equality, it suffices to note that

det



1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 −1 0 1 0
0 0 0 1 0 1 0 0 −1 0

−1 1 0 0 −1 0 0 1 0 0
−1 0 1 0 0 0 1 0 0 −1
−1 0 0 1 0 0 0 −1 0 1
0 −1 1 0 −1 0 0 0 0 0
0 −1 0 1 0 −1 0 1 0 0
0 0 −1 1 0 0 0 0 1 −1


= 100,

where the left side of the matrix is a truncated incidence matrix of K5 and the right side is an
incidence submatrix. This completes the proof.
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