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planarity criteria



Planarity criteria

Definition
A graph is planar if it can be drawn on the plane in such a way that its edges intersect
only at their endpoints.

1 Kuratowski (1930): planar iff. it does not contain a subdivision of K5 or K3,3
2 Whitney (1932): planar iff. its graphic matroid is cographic
3 Wagner (1937): planar iff. its minors do not include K5 or K3,3
4 Mac Lane (1937): planar iff. its cycle space has a 2-basis
5 de Fraysseix–Rosenstiehl (1982, 1985): criterion based on depth-first search trees
6 Hanani-Tutte (1934, 1970): criterion based on the parity of edge crossings
7 Schnyder (1989): criterion based on poset dimensions
8 ...
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We give a linear-algebraic planarity criterion based on the number of spanning trees.



Incidence matrices and variants

Definition
Given a graph G with orientation D = (V ,A), its incidence matrix is an A× V matrix,
denoted by ιD = (ae,v ), ae,v is 1 if e enters v , −1 if e leaves v , and 0 otherwise.

a

b c


a b c
-1 1
-1 1

1 -1



Definition
A truncated incidence matrix of a graph (resp. digraph), denoted by trun(·), is an
incidence matrix of the graph (resp. digraph) with an arbitrary column removed.

Definition
An incidence submatrix is a matrix where each row has at most one 1, at most one −1,
and all other entries zero. A bi-incidence matrix is a concatenation [M|N] of two
incidence submatrices M and N.
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Our criterion

Definition
Given a connected graph G ,

we use maxdet(G) to denote the maximum determinant of a square concatenation
[M|N], where M is a truncated incidence matrix of G and N is an incidence
submatrix of appropriate size;

we define its excess to be ε(G) := τ(G)− maxdet(G).

Given a disconnected graph G , we define its excess ε(G) to be the sum of the excesses
of its connected components.

Theorem (Bu, P. ’2024+)

For any graph G ,
ε(G) = 0, if G is planar,
ε(G) ≥ 18, if G is nonplanar.

This gives a certificate of planarity of a planar graph that can be verified by
computing a determinant and counting spanning trees.

ε(K3,3) = 18.
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Case of planar graphs

Lemma
Let G be a connected planar graph with orientation D.

Let D∗ be the planar dual of D.
For each i , suppose that the i th rows of trun(D) and trun(D∗) correspond to the same
arc (and its dual arc). Then∣∣ det [trun(D) | trun (D∗)]

∣∣ = τ(G).

v2 v3

v1

f1
f2



v1 v2 v3 f1 f2
-1 -1
1 -1 -1

1 -1 1
-1 1

-1 1 1
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Proof

(
det

[
trun(D) trun (D∗)

])2
= det

[
trun(D) trun (D∗)

]T [
trun(D) trun (D∗)

]
= det

[
trun(D)T trun(D) trun(D)T trun (D∗)

trun (D∗)T trun(D) trun (D∗)T trun (D∗)

]
.

Ingredient 1

trun(D)T trun(D) is the Laplacian of G with the row and column indexed by the
truncated vertex removed.

Ingredient 2 (Kirchhoff’s matrix-tree theorem)

τ(G) is equal to the determinant of its Laplacian with the row and column indexed by
the same vertex removed.

Ingredient 3 (folklore)

If G is a connected planar graph, then τ(G∗) = τ(G).
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Proof (cont’d)

Hope

trun(D)T trun (D∗) = 0,

so(
det
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])2
= det

[
trun(D)T trun(D) 0

0 trun (D∗)T trun (D∗)

]
= det

(
trun(D)T trun(D)

)
· det

(
trun (D∗)

T trun (D∗)
)

= τ(G) · τ (G∗) = τ(G)2.

Proof of Hope. Let c be a column of trun(D) corresponding to vertex v of D. Let c ′ be
a column of trun(D∗) corresponding to face f of D. Want: cTc ′ = 0.

If there is no arc incident to both v and f , done.

Otherwise,

f

v

e1

e2

e1

e2



v
e1 −1
e2 1

0
...
0

 ·



f
e1 −1
e2 −1

0
...
0

 = 0
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Case of nonplanar graphs

Lemma (merge-cut lemma)

For any connected graph G = (V ,E) and any e ∈ E with G \ e connected, we have
maxdet(G) ≤ maxdet(G/e) + maxdet(G \ e).

Reminiscent?

Proposition (deletion-contraction relation for the number of spanning trees)

For any graph G = (V ,E) and any e ∈ E , we have τ(G) = τ(G/e) + τ(G \ e).

Merge-cut lemma
For any connected graph G = (V ,E) and any e ∈ E with G \ e connected, we have
ε(G) ≥ ε(G/e) + ε(G \ e).

Corollary
For any graph G , we have ε(G) ≥ 0.

Proof. If G is a tree, ε(G) = 0. Otherwise, G has a non-bridge edge e, so we induct.
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Case of nonplanar graphs (cont’d)

Theorem (Wagner ’1937)

A graph is nonplanar if and only if it can produce either K5 or K3,3 by a sequence of
edge contractions and edge deletions.

Each intermediate graph is connected!
If e is non-bridge, then ε(G) ≥ ε(G/e) + ε(G \ e) ≥ max{ε(G/e), ε(G \ e)}.
Inductively, ε(G) ≥ min{ε(K5), ε(K3,3)} if G is nonplanar.
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a question from polyhedral combinatorics



Totally unimodular matrices

Definition
A matrix is totally unimodular if any square submatrix has determinant in {−1, 0, 1}.

Total unimodularity is an important tool for analyzing integrality of a polyhedron.

Proposition (Poincaré ’1900; Veblen, Franklin ’1921; Chuard ’1922)

The incidence matrix of any digraph is totally unimodular.

Is the concatenation [M|N] of two incidence matrices M and N also totally unimodular?

No, det

 1 0 −1
0 −1 −1
1 −1 1

 = −3.

How large/small can the determinant of a square submatrix of such a concatenation?
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Two extremal problems

Definition
For all m ∈ N, let ∆m be the maximum determinant of an m ×m concatenation [M|N]
of two incidence submatrices M and N.

Definition (Kenyon ’1996)

For all m ∈ N, let Tm be the maximum number of spanning trees in a planar graph with
m edges, where we allow parallel edges between two vertices.

Theorem (Bu, P. ’2024+)

For any planar graph G , we have maxdet(G) = τ(G).

Corollary
For all m ∈ N, we have Tm ≤ ∆m.



Two extremal problems

Definition
For all m ∈ N, let ∆m be the maximum determinant of an m ×m concatenation [M|N]
of two incidence submatrices M and N.

Definition (Kenyon ’1996)

For all m ∈ N, let Tm be the maximum number of spanning trees in a planar graph with
m edges, where we allow parallel edges between two vertices.

Theorem (Bu, P. ’2024+)

For any planar graph G , we have maxdet(G) = τ(G).

Corollary
For all m ∈ N, we have Tm ≤ ∆m.



Two extremal problems

Definition
For all m ∈ N, let ∆m be the maximum determinant of an m ×m concatenation [M|N]
of two incidence submatrices M and N.

Definition (Kenyon ’1996)

For all m ∈ N, let Tm be the maximum number of spanning trees in a planar graph with
m edges, where we allow parallel edges between two vertices.

Theorem (Bu, P. ’2024+)

For any planar graph G , we have maxdet(G) = τ(G).

Corollary
For all m ∈ N, we have Tm ≤ ∆m.



Two extremal problems

Definition
For all m ∈ N, let ∆m be the maximum determinant of an m ×m concatenation [M|N]
of two incidence submatrices M and N.

Definition (Kenyon ’1996)

For all m ∈ N, let Tm be the maximum number of spanning trees in a planar graph with
m edges, where we allow parallel edges between two vertices.

Theorem (Bu, P. ’2024+)

For any planar graph G , we have maxdet(G) = τ(G).

Corollary
For all m ∈ N, we have Tm ≤ ∆m.



Two extremal problems

Definition
For all m ∈ N, let ∆m be the maximum determinant of an m ×m concatenation [M|N]
of two incidence submatrices M and N.

Definition (Kenyon ’1996)

For all m ∈ N, let Tm be the maximum number of spanning trees in a planar graph with
m edges, where we allow parallel edges between two vertices.

Theorem (Bu, P. ’2024+)

For any planar graph G , we have maxdet(G) = τ(G).

Corollary
For all m ∈ N, we have Tm ≤ ∆m.



An upper bound

Theorem (Bu, P. ’2024+)

For m ∈ N, ∆m ≤ δm, where δ ≃ 1.8393 is the unique real root of x3 − x2 − x − 1 = 0.

Proof. Let [M|N] achieve ∆m. Extend [M|N] to [M ′|N ′] so that each nonzero row of M
and N has exactly one 1 and exactly one −1. Then [M ′|N ′] has m + 2 columns with at
most 4m nonzero entries.

Then [M ′|N ′] has a column with at most ⌊4m/(m + 2)⌋ ≤ 3 nonzero entries. By
elementary column operations, w.l.o.g., this column is in [M|N].
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only, then one can remove this row and perform column operations to obtain a square
bi-incidence matrix with one fewer row and column, while preserving the determinant.
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A “wild” conjecture

Evidence 1

m 1 2 3 4 5 6 7 8 9 10

Tm 1 2 3 5 8 16 24 45 75 130
∆m 1 2 3 5 8 16 24 45 75 130

Evidence 2 (Stoimenow ’2007)

For m ∈ N, Tm ≤ δm, where δ ≃ 1.8393 is the unique real root of x3 − x2 − x − 1 = 0.

The argument of Stoimenow (2007) is knot-theoretic and (in an equivalent way) uses
the fact that any triangle-free planar graph has a vertex of degree at most 3.

Conjecture 1
For all m ∈ N, we have Tm = ∆m.

Fact (Wu ’1977; Kenyon ’1996)

For all m ∈ N, we have Tm ≥ 1.7916m, which is achieved by square grid graphs.
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Towards the conjecture

Conjecture 1
For all m ∈ N, we have Tm = ∆m.

Conjecture 2
If G is a connected nonplanar graph with m edges, then maxdet(G) ≤ Tm.

In other words: the maximum maxdet(·) value over graphs with the same number
of edges is always achieved by planar graphs.

In other words: nonplanar graphs are “dominated” by the best planar graph with
the same number of edges linear-algebraically in terms of their maxdet(·) values.

Conjectures 1 and 2 are equivalent by the zero-row-removal lemma!
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Towards the conjecture (cont’d)

Theorem (Bu, P. ’2024+)

If G is a subdivision of K5 or K3,3 with m edges, then maxdet(G) ≤ Tm.

Proof ideas.

Consider the bi-incidence matrix that attains maxdet(G). It suffices to show that
either the left side or the right side is “planar.”

In the case of K3,3, we show that the right side is “planar” w.l.o.g., using convexity.

In the case of K5, we show that the left side (a truncated incidence matrix of G)
can be transformed to be “planar” using careful matrix operations, while preserving
the determinant.
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Future directions

Does Conjecture 1 hold?
If so, what are the asymptotic behaviors of Tm and ∆m?

Can the ideas from the last proof, e.g., the edge relocation method, be generalized
to a broader class of nonplanar graphs?

How can one deal with many copies of subdivisions of K5 and K3,3?

Faster algorithms for counting spanning trees in a planar graph?

Faster algorithms for testing planarity?
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Thanks!

It’s nice to be back.


