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Paul Erdős famously spoke of a book, maintained by
God, in which was written the simplest, most beautiful
proof of each theorem. The highest compliment Erdős
could give a proof was that it “came straight from the
book.” In this case, I find it hard to imagine that even
God knows how to prove the Sensitivity Conjecture in any
simpler way than this.

— Scott Aaronson1

1https://www.scottaaronson.com/blog/?p=4229.

https://www.scottaaronson.com/blog/?p=4229
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s(f , 101) = 2

s(f ) = 2

Definition

For x ∈ {0, 1}n and S ⊆ [n], we denote
by xS the binary vector obtained from x
by flipping indices from S .

Definition

For f : {0, 1}n → {0, 1}, the local
sensitivity s(f , x) of f on the input x is
defined as the number of indices i such
that f (x) 6= f (x{i}).

Definition

For f : {0, 1}n → {0, 1}, the sensitivity
s(f ) of f is defined as maxx∈{0,1}n s(f , x).
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Definition

For f : {0, 1}n → {0, 1}, the local block
sensitivity bs(f , x) of f on the input x is
defined as the maximum number of
disjoint blocks B1, . . . ,Bk of [n] such
that f (x) 6= f (xBi ) for each i ∈ [k].

Definition

For f : {0, 1}n → {0, 1}, the block
sensitivity bs(f ) of f is defined as
maxx∈{0,1}n bs(f , x).

Observation

For f : {0, 1}n → {0, 1}, bs(f ) ≥ s(f ).
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Sensitivity vs. Block Sensitivity

Question 1

Is it possible that bs(f ) > s(f )?

◦ Yes! Let f : {0, 1}8 → {0, 1} be such that f (x) = 1 if and
only if the number of 1’s in x is either 4 or 5.

◦ For most inputs x , e.g., x = 00000000, s(f , x) = 0.

◦ For x = 11100000, f (x{i}) 6= f (x) for i ∈ {4, . . . , 8}, so
s(f , x) = 5. Indeed, s(f ) = 5.

◦ For x = 11110000, then {1}, {2}, {3}, {4}, {5, 6}, {7, 8} are 6
disjoint, sensitive blocks for f , so bs(f ) ≥ 6 > s(f ).
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Sensitivity vs. Block Sensitivity

Question 2

How large can bs(f ) be compared to s(f ), asymptotically?

Theorem (Rubinstein 1995)

There exists an infinite family of Boolean functions f such that

bs(f ) = Ω
(
s(f )2

)
.

Define f : {0, 1}n2 → {0, 1} as

f (x11, . . . , xnn) =
n∨

i=1

g (xi1, . . . , xin) ,

where g(x1, . . . , xn) if and only if xj = xj+1 = 1 for some
j ∈ [n − 1], and all other xk = 0.
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Rubinstein’s Function

Claim

bs(f ) ≥ bs(f , 0) = Ω(n2).

Proof.

0 0 0 0 · · · → 0
0 0 0 0 · · · → 0
0 0 0 0 · · · → 0
0 0 0 0 · · · → 0
...

...
...

...
...
↓
0
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Rubinstein’s Function

Claim

s(f ) = O(n).

Proof.

◦ Case 1: f (x) = 0.
Each row must output 0.

There are at most two sensitive indices on each row, e.g.,

0 . . . 0 1 0 . . . 0

Hence, s(f , x) ≤ 2n.

◦ Case 2: f (x) = 1.

• If two rows output 1, s(f , x) = 0.
• If only one row outputs 1, s(f , x) ≤ n.
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Sensitivity vs. Block Sensitivity

Question 3 (Nisan and Szegedy 1992)

Is bs(f ) always polynomial in s(f )?

Theorem (Huang 2019)

For every Boolean function f ,

bs(f ) ≤ s(f )4.
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Why?

Definition

Complexity measures α, β of Boolean functions are polynomially
related if there exist polynomials p1, p2 such that for every
Boolean function f ,

α(f ) ≤ p1(β(f )), β(f ) ≤ p2(α(f )).

Theorem (Hatami, Kulkarni, and Pankratov 2010)

The following complexity measures are polynomially related:
◦ block sensitivity
◦ decision tree complexity
◦ certificate complexity
◦ degree as polynomial

◦ approximate degree
◦ randomized query complexity
◦ quantum query complexity
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Why?

So if, as is conjectured, sensitivity and block-sensitivity
are polynomially related, then sensitivity—arguably the
most basic of all Boolean function complexity measures—–
ceases to be an outlier and joins a large and happy flock.

— Scott Aaronson2

◦ Low-sensitivity Boolean functions are easy to compute in
computational models like the deterministic decision tree.

◦ Low-sensitivity Boolean functions have low degrees as real
polynomials.

◦ Any randomized algorithm to guess the parity of an n-bit
string, which succeeds with probability ≥ 2

3 on the majority of
strings, must make at least ∼

√
n queries to the string, while

any such quantum algorithm must make at least ∼ n1/4

queries (Aaronson et al. 2014).

2https://www.scottaaronson.com/blog/?p=453.

https://www.scottaaronson.com/blog/?p=453


Why?

So if, as is conjectured, sensitivity and block-sensitivity
are polynomially related, then sensitivity—arguably the
most basic of all Boolean function complexity measures—–
ceases to be an outlier and joins a large and happy flock.

— Scott Aaronson2

◦ Low-sensitivity Boolean functions are easy to compute in
computational models like the deterministic decision tree.

◦ Low-sensitivity Boolean functions have low degrees as real
polynomials.

◦ Any randomized algorithm to guess the parity of an n-bit
string, which succeeds with probability ≥ 2

3 on the majority of
strings, must make at least ∼

√
n queries to the string, while

any such quantum algorithm must make at least ∼ n1/4

queries (Aaronson et al. 2014).

2https://www.scottaaronson.com/blog/?p=453.

https://www.scottaaronson.com/blog/?p=453


Why?

So if, as is conjectured, sensitivity and block-sensitivity
are polynomially related, then sensitivity—arguably the
most basic of all Boolean function complexity measures—–
ceases to be an outlier and joins a large and happy flock.

— Scott Aaronson2

◦ Low-sensitivity Boolean functions are easy to compute in
computational models like the deterministic decision tree.

◦ Low-sensitivity Boolean functions have low degrees as real
polynomials.

◦ Any randomized algorithm to guess the parity of an n-bit
string, which succeeds with probability ≥ 2

3 on the majority of
strings, must make at least ∼

√
n queries to the string, while

any such quantum algorithm must make at least ∼ n1/4

queries (Aaronson et al. 2014).

2https://www.scottaaronson.com/blog/?p=453.

https://www.scottaaronson.com/blog/?p=453


Why?

So if, as is conjectured, sensitivity and block-sensitivity
are polynomially related, then sensitivity—arguably the
most basic of all Boolean function complexity measures—–
ceases to be an outlier and joins a large and happy flock.

— Scott Aaronson2

◦ Low-sensitivity Boolean functions are easy to compute in
computational models like the deterministic decision tree.

◦ Low-sensitivity Boolean functions have low degrees as real
polynomials.

◦ Any randomized algorithm to guess the parity of an n-bit
string, which succeeds with probability ≥ 2

3 on the majority of
strings, must make at least ∼

√
n queries to the string, while

any such quantum algorithm must make at least ∼ n1/4

queries (Aaronson et al. 2014).

2https://www.scottaaronson.com/blog/?p=453.

https://www.scottaaronson.com/blog/?p=453


Notations

◦ Given an undirected graph G with |V (G )| = m, a matrix
A ∈Mm({−1, 0, 1}) is a signed adjacency matrix of G
when Aij = 0 if and only if i , j are not adjacent in G .

◦ For an undirected graph G , we use ∆(G ) to denote the
maximum degree of G .

◦ For an undirected graph G and an induced subgraph H of G ,
we use G \ H to denote the subgraph of G induced by the
vertex set V (G ) \ V (H).

◦ We use Bn to denote the n-dimensional Boolean hypercube.

◦ For an induced subgraph H of Bn, let

Γ(H) = max {∆(H),∆ (Bn \ H)} .

◦ Given symmetric A ∈Mm(R), let the real eigenvalues of A be
ordered such that λ1(A) ≥ . . . ≥ λm(A), counting multiplicity.

◦ Given a Boolean function f , we use deg(f ) to denote the
degree of f , i.e., degree of the unique multilinear real
polynomial that represents f .
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Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)

T.F.A.E. for any monotone function h : N→ R.

◦ For any induced subgraph H of Bn with |V (H)| 6= 2n−1, we
have Γ(H) ≥ h(n).

◦ For any Boolean function f , we have s(f ) ≥ h(deg(f )).

◦ Idea 1: largest eigenvalue. ∆(G ) ≥ λ1(A) for a graph G ,
where A is a signed adjacency matrix of G .

◦ Idea 2: eigenvalue interlace. If B is a k × k principal
submatrix of A ∈Mm(R) symmetric, λ1(B) ≥ λm−k+1(A).

m = 2n, k = 2n−1 + 1 =⇒ λ1(B) ≥ λ2n−1(A).

◦ Idea 3: magic signed adjacency matrix. Constructs a
signed adjacency matrix A of Bn with λ2n−1(A) =

√
n.

◦ If H is an induced subgraph of Bn with |V (H)| = 2n−1 + 1,

∆(H) ≥
√
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◦ For any Boolean function f , we have s(f ) ≥ h(deg(f )).

Theorem (Huang 2019)

For n ∈ N, if H is a (2n−1 + 1)-vertex induced subgraph of Bn, then

∆(H) ≥
√
n.

◦ For any induced subgrpah H of Bn with |V (H)| 6= 2n−1, one
of H and Bn \ H contains at least 2n−1 + 1 vertices.

◦ Gotsman and Linial (1992): s(f ) ≥
√

deg(f ).

◦ Tal (2013): bs(f ) ≤ deg(f )2. =⇒ bs(f ) ≤ s(f )4.



Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)

T.F.A.E. for any monotone function h : N→ R.

◦ For any induced subgraph H of Bn with |V (H)| 6= 2n−1, we
have Γ(H) ≥ h(n).

◦ For any Boolean function f , we have s(f ) ≥ h(deg(f )).

Theorem (Huang 2019)

For n ∈ N, if H is a (2n−1 + 1)-vertex induced subgraph of Bn, then

∆(H) ≥
√
n.

◦ For any induced subgrpah H of Bn with |V (H)| 6= 2n−1, one
of H and Bn \ H contains at least 2n−1 + 1 vertices.

◦ Gotsman and Linial (1992): s(f ) ≥
√

deg(f ).

◦ Tal (2013): bs(f ) ≤ deg(f )2. =⇒ bs(f ) ≤ s(f )4.



Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)

T.F.A.E. for any monotone function h : N→ R.

◦ For any induced subgraph H of Bn with |V (H)| 6= 2n−1, we
have Γ(H) ≥ h(n).

◦ For any Boolean function f , we have s(f ) ≥ h(deg(f )).

Theorem (Huang 2019)

For n ∈ N, if H is a (2n−1 + 1)-vertex induced subgraph of Bn, then

∆(H) ≥
√
n.

◦ For any induced subgrpah H of Bn with |V (H)| 6= 2n−1, one
of H and Bn \ H contains at least 2n−1 + 1 vertices.

◦ Gotsman and Linial (1992): s(f ) ≥
√

deg(f ).

◦ Tal (2013): bs(f ) ≤ deg(f )2. =⇒ bs(f ) ≤ s(f )4.



Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)

T.F.A.E. for any monotone function h : N→ R.

◦ For any induced subgraph H of Bn with |V (H)| 6= 2n−1, we
have Γ(H) ≥ h(n).

◦ For any Boolean function f , we have s(f ) ≥ h(deg(f )).

Theorem (Huang 2019)

For n ∈ N, if H is a (2n−1 + 1)-vertex induced subgraph of Bn, then

∆(H) ≥
√
n.

◦ For any induced subgrpah H of Bn with |V (H)| 6= 2n−1, one
of H and Bn \ H contains at least 2n−1 + 1 vertices.

◦ Gotsman and Linial (1992): s(f ) ≥
√

deg(f ).

◦ Tal (2013): bs(f ) ≤ deg(f )2.

=⇒ bs(f ) ≤ s(f )4.



Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)

T.F.A.E. for any monotone function h : N→ R.

◦ For any induced subgraph H of Bn with |V (H)| 6= 2n−1, we
have Γ(H) ≥ h(n).

◦ For any Boolean function f , we have s(f ) ≥ h(deg(f )).

Theorem (Huang 2019)

For n ∈ N, if H is a (2n−1 + 1)-vertex induced subgraph of Bn, then

∆(H) ≥
√
n.

◦ For any induced subgrpah H of Bn with |V (H)| 6= 2n−1, one
of H and Bn \ H contains at least 2n−1 + 1 vertices.

◦ Gotsman and Linial (1992): s(f ) ≥
√

deg(f ).

◦ Tal (2013): bs(f ) ≤ deg(f )2. =⇒ bs(f ) ≤ s(f )4.



Idea 1: Largest Eigenvalue

Lemma

Let G be an m-vertex undirected graph. Let A ∈Mm({−1, 0, 1})
be symmetric with Aij = 0 if i , j are not adjacent in G . Then

∆(G ) ≥ λ1(A).

Proof.

◦ Let (λ1, ~v) be an eigenpair of A. Then λ1~v = A~v .

◦ Let vj be the component of ~v with the largest absolute value.

|λ1| · |vj | = |λ1vj | =
∣∣∣(λ1~v)j

∣∣∣ =
∣∣∣(A~v)j

∣∣∣ =

∣∣∣∣∣
m∑
i=1

Ajivi

∣∣∣∣∣
≤

m∑
i=1

|Aji | · |vi | ≤
m∑
i=1

|Aji | · |vi | ≤ ∆(G ) |vj | .

◦ Hence |λ1| ≤ ∆(G ).
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Idea 2: Eigenvalue Interlace

Theorem (Cauchy’s Interlace Theorem)

Let A ∈Mm(R) be symmetric. Let B be a k × k principal
submatrix of A for some m < n. Then for all i ∈ [m],

λi (A) ≥ λi (B) ≥ λi+n−m(A).

◦ If A be a signed adjacency matrix of Bn, and if H an induced
subgraph of Bn with |V (H)| = 2n−1 + 1, then

λ1 (AH) ≥ λ1+2n−(2n−1+1)(A) = λ2n−1(A),

where AH is the corresponding principal submatrix of A.

◦ Magic! Find a signed adjacency matrix A of Bn with

λ2n−1(A) =
√
n.
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Idea 3: Magic Signed Adjacency Matrix

Lemma

Let

A1 =

[
0 1
1 0

]
, An =

[
An−1 I
I −An−1

]
.

Then An ∈M2n(R) whose eigenvalues are
√
n of multiplicity 2n−1,

and −
√
n of multiplicity 2n−1.

Uses Hadamard’s inequality. See Huang’s talk at Simons Institute.3

3https://www.youtube.com/watch?v=EJoe4qH6kLs.

https://www.youtube.com/watch?v=EJoe4qH6kLs
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Idea 3: Magic Signed Adjacency Matrix

A1 =

[
0 1
1 0

]
, An =

[
An−1 I
I −An−1

]
.

Proof.

◦ Prove by induction that A2
n = nI . For n = 1, A2

1 = I .

◦ Suppose A2
n−1 = (n − 1)I . Then

A2
n =

[
A2
n−1 + I 0

0 A2
n−1 + I

]
=

[
nI 0
0 nI

]
= nI .

◦ Hence, the eigenvalues of An are either
√
n or −

√
n.

◦ Since
∑

λ eigenvalue of An
λ = tr(An) = 0, then exactly half of

the eigenvalues of An are
√
n, and the rest are −

√
n.
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Open Questions

◦ Let G be a “nice” graph with high symmetry. Denote by
α(G ) the independence number of G , i.e., the size of the
largest independent vertex set. Let f (G ) be the minimum
∆(H) over (α(G ) + 1)-vertex induced subgraphs H of G
vertices. What can we say about f (G )? For which graphs,
Huang’s method would provide a tight bound?

◦ Let g(n, k) be the minimum t such that every t-vertex
induced subgraphs H of Bn has ∆(H) ≥ k . Huang (2019)
shows g(n,

√
n) = 2n−1 + 1.

◦ The best separation between block sensitivity and sensitivity is
bs(f ) = 2

3s(f )2 − 1
3s(f ) (Ambainis and Sun 2011). Close the

gap between this and the quartic upper bound.
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Huang’s Timeline



Thank you!


