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Paul Erdés famously spoke of a book, maintained by
God, in which was written the simplest, most beautiful
proof of each theorem. The highest compliment Erdés
could give a proof was that it “came straight from the
book.” In this case, | find it hard to imagine that even
God knows how to prove the Sensitivity Conjecture in any
simpler way than this.

— Scott Aaronsont

"https://wuw.scottaaronson. com/blog/?p=4229-


https://www.scottaaronson.com/blog/?p=4229
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sensitivity bs(f,x) of f on the input x is
defined as the maximum number of
disjoint blocks By, ..., By of [n] such
that f(x) # f(xB7) for each i € [k].
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Question 1
Is it possible that bs(f) > s(f)?

o Yes! Let f:{0,1}® — {0,1} be such that f(x) =1 if and
only if the number of 1's in x is either 4 or 5.

o For most inputs x, e.g., x = 00000000, s(f, x) = 0.

o For x = 11100000, f(x{}) # f(x) for i € {4,...,8}, so
s(f,x) =5. Indeed, s(f) = 5.

o For x = 11110000, then {1},{2},{3},{4},{5,6},{7,8} are 6
disjoint, sensitive blocks for f, so bs(f) > 6 > s(f).
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Question 2
How large can bs(f) be compared to s(f), asymptotically?

Theorem (Rubinstein 1995)

There exists an infinite family of Boolean functions f such that

bs(f) = Q (s(f)?).

Define £ : {0,1}" — {0,1} as
f(Xllw-',Xnn) - \/g(xi17"'7xin)7
i=1

where g(xi,...,xy) if and only if x; = xj11 = 1 for some
J € [n—1], and all other x, = 0.
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Rubinstein’s Function

Claim
s(f) = O(n).

Proof.
o Case 1: f(x) =0.
Each row must output 0.
There are at most two sensitive indices on each row, e.g.,

o ... 01 0 ... 0
Hence, s(f,x) < 2n.
o Case 2: f(x) =1.

e If two rows output 1, s(f,x) = 0.
e If only one row outputs 1, s(f,x) < n.
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Question 3 (Nisan and Szegedy 1992)
Is bs(f) always polynomial in s(f)?

Theorem (Huang 2019)

For every Boolean function f,

bs(f) < s(f)*.
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Why?

Definition

Complexity measures «, 8 of Boolean functions are polynomially
related if there exist polynomials p1, po such that for every
Boolean function f,

a(f) < pu(B(F)),  B(F) < pa(aff)).

Theorem (Hatami, Kulkarni, and Pankratov 2010)

The following complexity measures are polynomially related:

o block sensitivity o approximate degree

o decision tree complexity o randomized query complexity
o certificate complexity o quantum query complexity

o degree as polynomial
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Why?

So if, as is conjectured, sensitivity and block-sensitivity
are polynomially related, then sensitivity—arguably the
most basic of all Boolean function complexity measures—

ceases to be an outlier and joins a large and happy flock.

— Scott Aaronson?

o Low-sensitivity Boolean functions are easy to compute in
computational models like the deterministic decision tree.

o Low-sensitivity Boolean functions have low degrees as real
polynomials.

o Any randomized algorithm to guess the parity of an n-bit
string, which succeeds with probability > % on the majority of
strings, must make at least ~ \/n queries to the string, while
any such quantum algorithm must make at least ~ n/4
queries (Aaronson et al. 2014).

https://www.scottaaronson.com/blog/?p=453.
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Notations

(@]

Given an undirected graph G with |V(G)| = m, a matrix
A€ Mn({-1,0,1}) is a signed adjacency matrix of G
when Aj; = 0 if and only if i, are not adjacent in G.
For an undirected graph G, we use A(G) to denote the
maximum degree of G.
For an undirected graph G and an induced subgraph H of G,
we use G \ H to denote the subgraph of G induced by the
vertex set V(G) \ V(H).
We use B” to denote the n-dimensional Boolean hypercube.
For an induced subgraph H of B”, let

I(H) =max{A(H),A(B"\ H)}.
Given symmetric A € Mp,(R), let the real eigenvalues of A be
ordered such that A;(A) > ... > A\p(A), counting multiplicity.
Given a Boolean function f, we use deg(f) to denote the

degree of f, i.e., degree of the unique multilinear real
polynomial that represents f.



Huang (2019)’s Roadmap



Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)
T.F.A.E. for any monotone function h: N — R.
o For any induced subgraph H of B" with |V (H)| # 2", we
have T'(H) > h(n).
o For any Boolean function f, we have s(f) > h(deg(f)).




Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)
T.F.A.E. for any monotone function h: N — R.
o For any induced subgraph H of B" with |V (H)| # 2", we
have T (H) > h(n).
o For any Boolean function f, we have s(f) > h(deg(f)).

o ldea 1: largest eigenvalue. A(G) > \;(A) for a graph G,
where A is a signed adjacency matrix of G.



Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)
T.F.A.E. for any monotone function h: N — R.
o For any induced subgraph H of B" with |V (H)| # 2", we
have T (H) > h(n).
o For any Boolean function f, we have s(f) > h(deg(f)).

o ldea 1: largest eigenvalue. A(G) > \;(A) for a graph G,
where A is a signed adjacency matrix of G.

o ldea 2: eigenvalue interlace. If B is a k x k principal
submatrix of A € Mp,(R) symmetric, A\1(B) > Apm—k+1(A).



Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)
T.F.A.E. for any monotone function h: N — R.
o For any induced subgraph H of B" with |V (H)| # 2", we
have T (H) > h(n).
o For any Boolean function f, we have s(f) > h(deg(f)).

o ldea 1: largest eigenvalue. A(G) > \;(A) for a graph G,
where A is a signed adjacency matrix of G.

o ldea 2: eigenvalue interlace. If B is a k x k principal
submatrix of A € Mp,(R) symmetric, A\1(B) > Apm—k+1(A).
m=2"k=2"141 = X\ (B) > \pn-1(A).



Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)
T.F.A.E. for any monotone function h: N — R.
o For any induced subgraph H of B" with |V (H)| # 2", we
have T (H) > h(n).
o For any Boolean function f, we have s(f) > h(deg(f)).

o ldea 1: largest eigenvalue. A(G) > \;(A) for a graph G,
where A is a signed adjacency matrix of G.

o ldea 2: eigenvalue interlace. If B is a k x k principal
submatrix of A € Mp,(R) symmetric, A\1(B) > Apm—k+1(A).
m=2"k=2"141 = X\ (B) > \pn-1(A).
o ldea 3: magic signed adjacency matrix. Constructs a
signed adjacency matrix A of B” with \yn-1(A) = /n.



Huang (2019)’s Roadmap

Theorem (Gotsman and Linial 1992)
T.F.A.E. for any monotone function h: N — R.

(¢]

For any induced subgraph H of B" with |V (H)| # 2", we
have T (H) > h(n).
For any Boolean function f, we have s(f) > h(deg(f)).

Idea 1: largest eigenvalue. A(G) > A\1(A) for a graph G,
where A is a signed adjacency matrix of G.

Idea 2: eigenvalue interlace. If B is a k x k principal
submatrix of A € Mp,(R) symmetric, A\1(B) > Apm—k+1(A).
m=2"k=2"141 = X\ (B) > \pn-1(A).
Idea 3: magic signed adjacency matrix. Constructs a
signed adjacency matrix A of B” with \yn-1(A) = /n.
If H is an induced subgraph of B” with |V(H)| =2""1 +1,
A(H) > +v/n.
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Lemma

Let G be an m-vertex undirected graph. Let A€ M,({-1,0,1})
be symmetric with A;; = 0 if i, j are not adjacent in G. Then

A(G) > M\ (A).

Proof.
o Let (A1, V) be an eigenpair of A. Then A\1vV = AvV.

o Let v; be the component of v with the largest absolute value.
m
> Ay
i=1
m m
<Y A il <D 1AL vl < A>G) [yl
i=1 i=1

o Hence |A1| < A(G).
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Theorem (Cauchy'’s Interlace Theorem)

Let A € My(R) be symmetric. Let B be a k x k principal
submatrix of A for some m < n. Then for all i € [m],

Ai(A) Z Ai(B) = Aign—m(A).
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Theorem (Cauchy'’s Interlace Theorem)

Let A€ Mpy(R) be symmetric. Let B be a k x k principal
submatrix of A for some m < n. Then for all i € [m],

Ai(A) Z Ai(B) = Aign—m(A).

o If A be a signed adjacency matrix of B”, and if H an induced
subgraph of B” with |V(H)| = 2""! + 1, then

)\1 (AH) Z )\1+2n_(2n71+1)(A) = )\2n71 (A),

where Ay is the corresponding principal submatrix of A.
o Magic! Find a signed adjacency matrix A of B" with

Aon1(A) = /.
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3https://www.youtube . com/watch?v=EJoe4qH6KLs.
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Uses Hadamard's inequality. See Huang's talk at Simons Institute.3

*https://www.youtube.com/watch?v=EJoe4qH6KLs.
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Proof.
o Prove by induction that A% =nl. For n=1, A% = 1.
o Suppose A2_; = (n—1)/. Then

A2+ 0 nl 0
2 n—1 _ _
=10 A%_1+/}_[O n/]_”"

o Hence, the eigenvalues of A, are either \/n or —/n.

o Since > cigenvalue of A, A = tr(An) = 0, then exactly half of
the eigenvalues of A, are \/n, and the rest are —/n.
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o Let G be a "nice” graph with high symmetry. Denote by
a(G) the independence number of G, i.e., the size of the
largest independent vertex set. Let f(G) be the minimum
A(H) over (a(G) + 1)-vertex induced subgraphs H of G
vertices. What can we say about f(G)? For which graphs,
Huang's method would provide a tight bound?
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Open Questions

o Let G be a "nice” graph with high symmetry. Denote by
a(G) the independence number of G, i.e., the size of the
largest independent vertex set. Let f(G) be the minimum
A(H) over (a(G) + 1)-vertex induced subgraphs H of G
vertices. What can we say about f(G)? For which graphs,
Huang's method would provide a tight bound?

o Let g(n, k) be the minimum t such that every t-vertex
induced subgraphs H of B” has A(H) > k. Huang (2019)
shows g(n,/n) =21 +1.

o The best separation between block sensitivity and sensitivity is
bs(f) = 25(f)? — %s(f) (Ambainis and Sun 2011). Close the

3
gap between this and the quartic upper bound.



Huang's Timeline

Nov 2012: | was introduced to this problem by Michael Saks when | was a postdoc at the IAS,
and got immediately attracted by the induced subgraph reformulation. And of course, in the
next few weeks, | exhausted all the combinatorial techinques that | am aware of, yet | could not
even improve the constant factor from the Chung-Furedi-Graham-Seymour paper, or give an
alternative proof without using the isoperimetric inequality.

Around mid-year 2013: | started to believe that the maximum eigenvalue is a better parameter
to look at, actually it is polynomially related to the max degree, i.e \sqgrt{\Delta(G)} \le
\lambda(G) \le \Delta(G). And in some sense it reflects some kind of “average degree”
(unfortunately the average degree itself could be very small, something like \sqrt{n}/2An).

2013-2018: | revisited this conjecture every time when | learn a new tool, without any success
though. But at least thinking about it helps me quickly fall asleep many nights.

Late 2018: After working on a project (with Pohoata and Klurman) that uses Cvetkovic’s inertia
bound to re-prove Kleitman’s isodiametric theorem (it is another cute proof using algebra
solving extremal combinatoiral problems), and several semesters of teaching a graduate
combinatorics course, | started to have a better understanding of eigenvalue interlacing, and
believe that it might help this problem. For example, applying interlacing to the original
adjacency matrix, one can already show that with (1/2+c) proportion of vertices, the induced
subgraph has maximum degree c’*\sqrt{n}. | don’t think this statement could follow easily from
combinatorial arguments. Yet at that time, | was hoping for developing something more
general using the eigenspace decomposition of the adjacency matrix, like in this unanswered
MO question:

https://mathoverflow.net/questions/331825/generalization-of-cauchys-eigenvalue-
interlacing-theorem

June 2019: In a Madrid hotel when I was painfully writing a proposal and trying to make the
approaches sound more convincing, | finally realized that the maximum eigenvalue of any
pseudo-adjacency matrix of a graph provides lower bound on the maximum degree. The rest is
just a bit of trial-and-error and linear algebra.



Thank you!



